(He	FINAL JEE-MAIN EXAMINATION – FEBRUARY, 2021 (Held On Wednesday 24 th February, 2021) TIME : 9 : 00 AM to 12 : 00 NOON MATHEMATICS TEST PAPER WITH ANSWER		
	MATHEMATICS	TEST PAPER WITH ANSWER	
1. 2.	SECTION-A The statement among the following that is a tautology is : (1) $A \lor (A \land B)$ (2) $A \land (A \lor B)$ (3) $B \rightarrow [A \land (A \rightarrow B)]$ (4) $[A \land (A \rightarrow B)] \rightarrow B$ Official Ans. by NTA (4) A man is walking on a straight line. The arithmetic mean of the reciprocals of the	5. The system of linear equations 3x - 2y - kz = 10 2x - 4y - 2z = 6 x + 2y - z = 5m is inconsistent if : (1) $k = 3, m = \frac{4}{5}$ (2) $k \neq 3, m \in \mathbb{R}$ (3) $k \neq 3, m \neq \frac{4}{5}$ (4) $k = 3, m \neq \frac{4}{5}$ Official Ans. by NTA (4)	
	intercepts of this line on the coordinate axes is $\frac{1}{4}$. Three stones A, B and C are placed at the points (1,1), (2, 2) and (4, 4) respectively. Then which of these stones is / are on the path of the man ? (1) A only (2) C only (3) All the three (4) B only Official Ans. by NTA (4)	 6. If f : R → R is a function defined f(x) = [x-1]cos(2x-1/2)π, where [.] denot the greatest integer function, then f is : (1) discontinuous at all integral values or except at x = 1 (2) continuous for every real x (4) discontinuous only at x = 1 Official Ans. by NTA (3) 7. The distance of the point (1, 1, 9) from the point 	
3.	The equation of the plane passing through the point $(1, 2, -3)$ and perpendicular to the planes 3x + y - 2z = 5 and $2x - 5y - z = 7$, is (1) 3x - 10y - 2z + 11 = 0 (2) 6x - 5y - 2z - 2 = 0 (3) 11x + y + 17z + 38 = 0 (4) 6x - 5y + 2z + 10 = 0 Official Ans. by NTA (3)	of intersection of the line $\frac{x-3}{1} = \frac{y-4}{2} = \frac{z-3}{2}$ and the plane $x + y + z = 17$ is : (1) $2\sqrt{19}$ (2) $19\sqrt{2}$ (3) 38 (4) $\sqrt{38}$ Official Ans. by NTA (4) 8. If the tangent to the curve $y = x^3$ at the po	
4.	The population P = P(t) at time 't' of a certain species follows the differential equation $\frac{dP}{dt} = 0.5P - 450. \text{ If P}(0) = 850, \text{ then the time}$ at which population becomes zero is : (1) $\log_e 18$ (2) $\log_e 9$	P(t, t ³) meets the curve again at Q, then to ordinate of the point which divides I internally in the ratio 1 : 2 is : (1) -2t ³ (2) 0 (3) -t ³ (4) 2t ³ Official Ans. by NTA (1) 9. If $\int \frac{\cos x - \sin x}{\sqrt{8 - \sin 2x}} dx = a \sin^{-1} \left(\frac{\sin x + \cos x}{b} \right) +$	
	(3) $\frac{1}{2}\log_{e} 18$ (4) $2\log_{e} 18$ Official Ans. by NTA (4)	where c is a constant of integration, then to ordered pair (a, b) is equal to : (1) $(-1, 3)$ (2) $(3, 1)$ (3) $(1, 3)$ (4) $(1, -3)$ Official Ans. by NTA (3)	

1

Final JEE - Main Exam February, 2021/24-02-2021/Morning Session

- **10.** The value of $-{}^{15}C_{1} + 2.{}^{15}C_{2} 3.{}^{15}C_{3} + \dots$ $-15.{}^{15}C_{15} + {}^{14}C_{1} + {}^{14}C_{3} + {}^{14}C_{5} + \dots + {}^{14}C_{11}$ is : (1) $2{}^{16} - 1$ (2) $2{}^{13} - 14$ (3) $2{}^{14}$ (4) $2{}^{13} - 13$ **Official Ans. by NTA (2)**
- **11.** The function

$$f(\mathbf{x}) = \frac{4\mathbf{x}^3 - 3\mathbf{x}^2}{6} - 2\sin \mathbf{x} + (2\mathbf{x} - 1)\cos \mathbf{x} :$$

(1) increases in $\left[\frac{1}{2}, \infty\right]$
(2) increases in $\left(-\infty, \frac{1}{2}\right]$
(3) decreases in $\left[\frac{1}{2}, \infty\right)$
(4) decreases in $\left(-\infty, \frac{1}{2}\right]$

Official Ans. by NTA (1)

12. Let $f : \mathbb{R} \to \mathbb{R}$ be defined as f(x) = 2x - 1 and $x - \frac{1}{2}$

g: R – {1}
$$\rightarrow$$
 R be defined as g(x) = $\frac{2}{x-1}$

Then the composition function f(g(x)) is :

- (1) onto but not one-one
- (2) both one-one and onto
- (3) one-one but not onto
- (4) neither one-one nor onto

Official Ans. by NTA (3)

13. An ordinary dice is rolled for a certain number of times. If the probability of getting an odd number 2 times is equal to the probability of getting an even number 3 times, then the probability of getting an odd number for odd number of times is :

(1)
$$\frac{1}{32}$$
 (2) $\frac{5}{16}$ (3) $\frac{3}{16}$ (4) $\frac{1}{2}$

Official Ans. by NTA (4)

14. A scientific committee is to be formed from 6 Indians and 8 foreigners, which includes at least 2 Indians and double the number of foreigners as Indians. Then the number of ways, the committee can be formed, is :

Official Ans. by NTA (1)

- 15. The area (in sq. units) of the part of the circle $x^2 + y^2 = 36$, which is outside the parabola $y^2 = 9x$, is :
 - (1) $24\pi + 3\sqrt{3}$ (2) $12\pi 3\sqrt{3}$

(3)
$$24\pi - 3\sqrt{3}$$
 (4) $12\pi + 3\sqrt{3}$

- 16. Let p and q be two positive numbers such that p + q = 2 and $p^4 + q^4 = 272$. Then p and q are roots of the equation : (1) $r^2 = 2r + 2 = 0$
 - (1) $x^2 2x + 2 = 0$ (2) $x^2 - 2x + 8 = 0$

$$\begin{array}{l} (2) \ x^2 - 2x + 8 = 0 \\ (3) \ x^2 - 2x + 136 = 0 \end{array}$$

- $\begin{array}{c} (5) \ x \\ (4) \ x^2 2x + 16 = 0 \end{array}$
- Official Ans. by NTA (4)
- 17. Two vertical poles are 150 m apart and the height of one is three times that of the other. If from the middle point of the line joining their feet, an observer finds the angles of elevation of their tops to be complementary, then the height of the shorter pole (in meters) is :

(1)
$$20\sqrt{3}$$
 (2) $25\sqrt{3}$
(3) 30 (4) 25
Official Aps. by NTA (2)

Official Ans. by NTA (2)

18.
$$\lim_{x \to 0} \frac{\int_{0}^{x^{2}} (\sin \sqrt{t}) dt}{x^{3}}$$
 is equal to :

(1)
$$\frac{2}{3}$$
 (2) $\frac{3}{2}$ (3) 0 (4) $\frac{1}{15}$

Official Ans. by NTA (1)

19. If $e^{(\cos^2 x + \cos^4 x + \cos^6 x + \dots, \infty) \log_e 2}$ satisfies the equation $t^2 - 9t + 8 = 0$, then the value of

$$\frac{2\sin x}{\sin x + \sqrt{3}\cos x} \left(0 < x < \frac{\pi}{2} \right) \text{ is}$$
(1) $2\sqrt{3}$
(2) $\frac{3}{2}$

(3)
$$\sqrt{3}$$
 (4) $\frac{1}{2}$

Official Ans. by NTA (4)

ALLEN Final JEE - Main Exam February, 2021/24-02-2021/Morning Session

20. The locus of the mid-point of the line segment joining the focus of the parabola $y^2 = 4ax$ to a moving point of the parabola, is another parabola whose directrix is :

(1)
$$x = -\frac{a}{2}$$
 (2) $x = \frac{a}{2}$
(3) $x = 0$ (4) $x = a$
Official Ans. by NTA (3)

SECTION-B

If the least and the largest real values of α, for which the equation z + α|z − 1| + 2i = 0 (z ∈ C and i = √−1) has a solution, are p and q respectively; then 4(p² + q²) is equal to ______Official Ans. by NTA (10)

2. If $\int_{-a}^{a} (|x|+|x-2|)dx = 22$, (a > 2) and [x]denotes the greatest integer $\leq x$, then $\int_{-a}^{-a} (x+[x]) dx$ is equal to _____.

Official Ans. by NTA (3)

3. Let
$$A = \{n \in N : n \text{ is a 3-digit number}\}$$

 $B = \{9k + 2 : k \in N\}$

and $C = \{9k + l : k \in N\}$ for some l (0 < l < 9)If the sum of all the elements of the set $A \cap (B \cup C)$ is 274 × 400, then *l* is equal to _____.

Official Ans. by NTA (5)

Let M be any 3 × 3 matrix with entries from the set {0, 1, 2}. The maximum number of such matrices, for which the sum of diagonal elements of M^TM is seven, is _____.

Official Ans. by NTA (540)

5. If one of the diameters of the circle $x^2 + y^2 - 2x - 6y + 6 = 0$ is a chord of another circle 'C', whose center is at (2, 1), then its radius is _____ .

Official Ans. by NTA (3)

6. The minimum value of α for which the

equation
$$\frac{4}{\sin x} + \frac{1}{1 - \sin x} = \alpha$$
 has at least one

solution in
$$\left(0, \frac{\pi}{2}\right)$$
 is _____

Official Ans. by NTA (9)

7.
$$\lim_{n \to \infty} \tan \left\{ \sum_{r=1}^{n} \tan^{-1} \left(\frac{1}{1+r+r^2} \right) \right\}$$
 is equal to _____.

Official Ans. by NTA (1)

8. Let three vectors \vec{a} , \vec{b} and \vec{c} be such that \vec{c} is coplanar with \vec{a} and \vec{b} , $\vec{a} \cdot \vec{c} = 7$ and \vec{b} is perpendicular to \vec{c} , where $\vec{a} = -\hat{i} + \hat{j} + \hat{k}$ and

$$\vec{b} = 2\hat{i} + \hat{k}$$
, then the value of $2\left|\vec{a} + \vec{b} + \vec{c}\right|^2$

Official Ans. by NTA (75)

is

9.

Let B_i (*i* = 1, 2, 3) be three independent events in a sample space. The probability that only B_1 occur is α , only B_2 occurs is β and only B_3 occurs is γ . Let p be the probability that none of the events B_i occurs and these 4 probabilities satisfy the equations ($\alpha - 2\beta$) p = $\alpha\beta$ and ($\beta - 3\gamma$)p = $2\beta\gamma$ (All the probabilities are assumed to lie in the interval (0,1)). Then

$$\frac{P(B_1)}{P(B_3)}$$
 is equal to_____.

Official Ans. by NTA (6)

10. Let
$$P = \begin{vmatrix} 3 & -1 & -2 \\ 2 & 0 & \alpha \\ 3 & -5 & 0 \end{vmatrix}$$

 $\begin{bmatrix} 3 & -5 & 0 \end{bmatrix}$ $Q = [q_{ij}]$ is a matrix satisfying PQ = kI₃ for some non-zero k \in R. If $q_{23} = -\frac{k}{8}$ and $|Q| = \frac{k^2}{2}$,

, where $\alpha \in R$. Suppose

then $\alpha^2 + k^2$ is equal to _____. Official Ans. by NTA (17)