FINAL JEE-MAIN EXAMINATION - FEBRUARY, 2021 (Held On Thursday 25th February, 2021) TIME: 3:00 PM to 6:00 PM

TEST PAPER WITH ANSWER MATHEMATICS **SECTION-A** If 0 < x, $y < \pi$ and $\cos x + \cos y - \cos(x + y) = \frac{3}{2}$, Let A be a 3×3 matrix with det(A) = 4. Let R_i 6. 1. denote the ith row of A. If a matrix B is obtained then sinx + cosy is equal to : by performing the operation $R_2 \rightarrow 2R_2 + 5R_3$ (2) $\frac{1+\sqrt{3}}{2}$ on 2A, then det(B) is equal to : (1) $\frac{1}{2}$ (2) 80(3) 128 (4) 64 (1) 16Official Ans. by NTA (4) (3) $\frac{\sqrt{3}}{2}$ (4) $\frac{1-\sqrt{3}}{2}$ The integral $\int \frac{e^{3\log_e 2x} + 5e^{2\log_e 2x}}{e^{4\log_e x} + 5e^{3\log_e x} - 7e^{2\log_e x}} dx, x > 0,$ 2. Official Ans. by NTA (2) 7. A plane passes through the points A(1, 2, 3), is equal to : (where c is a constant of integration) B(2, 3, 1) and C(2, 4, 2). If O is the origin and (1) $\log_{2} |x^{2} + 5x - 7| + c$ P is (2, -1, 1), then the projection of OP on (2) 4log $|x^2 + 5x - 7| + c$ this plane is of length : (1) $\sqrt{\frac{2}{7}}$ (2) $\sqrt{\frac{2}{3}}$ (3) $\sqrt{\frac{2}{11}}$ (4) $\sqrt{\frac{2}{5}}$ (3) $\frac{1}{4}\log_{e}|x^{2}+5x-7|+c$ (4) $\log_{e} \sqrt{x^2 + 5x - 7} + c$ Official Ans. by NTA (3) 8. In a group of 400 people, 160 are smokers and Official Ans. by NTA (2) non-vegetarian; 100 are smokers and 3. The shortest distance between the line x - y = 1vegetarian and the remaining 140 are and the curve $x^2 = 2y$ is : non-smokers and vegetarian. Their chances of (1) $\frac{1}{2}$ (2) $\frac{1}{2\sqrt{2}}$ (3) $\frac{1}{\sqrt{2}}$ (4) 0 getting a particular chest disorder are 35%, 20% and 10% respectively. A person is chosen Official Ans. by NTA (2) from the group at random and is found to be 4. If α , $\beta \in \mathbb{R}$ are such that 1 - 2i (here $i^2 = -1$) suffering from the chest disorder. The is a root of $z^2 + \alpha z + \beta = 0$, then $(\alpha - \beta)$ is equal probability that the selected person is a smoker to: and non-vegetarian is : (2) - 7(3) 7 (1) - 3(4) 3 Official Ans. by NTA (2) (1) $\frac{7}{45}$ (2) $\frac{14}{45}$ (3) $\frac{28}{45}$ (4) $\frac{8}{45}$ 5. A hyperbola passes through the foci of the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ and its transverse and Official Ans. by NTA (3) $\operatorname{cosec}\left|2\operatorname{cot}^{-1}(5) + \cos^{-1}\left(\frac{4}{5}\right)\right|$ is equal to : conjugate axes coincide with major and minor 9. axes of the ellipse, respectively. If the product of their eccentricities in one, then the equation (1) $\frac{56}{33}$ (2) $\frac{65}{56}$ of the hyperbola is : (3) $\frac{65}{33}$ (4) $\frac{75}{56}$

(1) $\frac{x^2}{9} - \frac{y^2}{25} = 1$ (2) $\frac{x^2}{9} - \frac{y^2}{16} = 1$ (3) $x^2 - y^2 = 9$ (4) $\frac{x^2}{2} - \frac{y^2}{4} = 1$

Official Ans. by NTA (2)

Official Ans. by NTA (2)

Final JEE - Main Exam February, 2021/25-02-2021/Evening Session

 $=\frac{5^{x}}{5^{x}+5},$

10. If the curve x² + 2y² = 2 intersects the line x + y = 1 at two points P and Q, then the angle subtended by the line segment PQ at the origin is :

(1)
$$\frac{\pi}{2} + \tan^{-1}\left(\frac{1}{3}\right)$$
 (2) $\frac{\pi}{2} - \tan^{-1}\left(\frac{1}{3}\right)$
(3) $\frac{\pi}{2} - \tan^{-1}\left(\frac{1}{4}\right)$ (4) $\frac{\pi}{2} + \tan^{-1}\left(\frac{1}{4}\right)$

Official Ans. by NTA (4)

- **11.** The contrapositive of the statement "If you will work, you will earn money" is :
 - (1) You will earn money, if you will not work
 - (2) If you will earn money, you will work
 - (3) If you will not earn money, you will not work(4) To earn money, you need to work

Official Ans. by NTA (3)

12. A function
$$f(x)$$
 is given by $f(x)$

then the sum of the series

$$f\left(\frac{1}{20}\right) + f\left(\frac{2}{20}\right) + f\left(\frac{3}{20}\right) + \dots + f\left(\frac{39}{20}\right) \text{ is equal}$$

to :

(1) $\frac{19}{2}$ (2) $\frac{49}{2}$ (3) $\frac{29}{2}$ (4) $\frac{39}{2}$ Official Ans. by NTA (4)

13. If for the matrix,
$$A = \begin{bmatrix} 1 & -\alpha \\ \alpha & \beta \end{bmatrix}$$
, $AA^{T} = I_{2}$, then

- the value of $\alpha^4 + \beta^4$ is : (1) 4 (2) 2 (3) 3 (4) 1 Official Ans. by NTA (4)
- 14. The minimum value of $f(x) = a^{a^x} + a^{1-a^x}$, where a, $x \in R$ and a > 0, is equal to : (1) 2a (2) $2\sqrt{a}$

(3)
$$a + \frac{1}{a}$$
 (4) $a + 1$

Official Ans. by NTA (2)

15. If
$$I_n = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot^n x \, dx$$
, then :

π

(1)
$$\frac{1}{I_2 + I_4}, \frac{1}{I_3 + I_5}, \frac{1}{I_4 + I_6}$$
 are in G.P.
(2) $I_2 + I_4, I_3 + I_5, I_4 + I_6$ are in A.P.
(3) $I_2 + I_4, (I_3 + I_5)^2, I_4 + I_6$ are in G.P.
(4) $\frac{1}{I_2 + I_4}, \frac{1}{I_3 + I_5}, \frac{1}{I_4 + I_6}$ are in A.P.

Official Ans. by NTA (4)

16.
$$\lim_{n \to \infty} \left[\frac{1}{n} + \frac{n}{(n+1)^2} + \frac{n}{(n+2)^2} + \dots + \frac{n}{(2n-1)^2} \right]$$

is equal to :

(1)
$$\frac{1}{2}$$
 (2) 1 (3) $\frac{1}{3}$ (4) $\frac{1}{4}$

Official Ans. by NTA (1)

17. Let A be a set of all 4-digit natural numbers whose exactly one digit is 7. Then the probability that a randomly chosen element of A leaves remainder 2 when divided by 5 is :

(1)
$$\frac{2}{9}$$
 (2) $\frac{122}{297}$ (3) $\frac{97}{297}$ (4) $\frac{1}{5}$

Official Ans. by NTA (3)

18. Let α and β be the roots of $x^2 - 6x - 2 = 0$. If

$$a_n = \alpha^n - \beta^n$$
 for $n \ge 1$, then the value of $\frac{a_{10} - 2a_8}{3a_9}$

19. Let x denote the total number of one-one functions from a set A with 3 elements to a set B with 5 elements and y denote the total number of one-one functions from the set A to the set A × B. Then :

(1)
$$y = 273x$$
 (2) $2y = 91x$
(3) $y = 91x$ (4) $2y = 273x$
Official Ans. by NTA (2)

Exam February, 2021/25-02-2021/Evening Session

- 20. The following system of linear equations 2x + 3y + 2z = 9 3x + 2y + 2z = 9 x - y + 4z = 8
 (1) has a solution (α, β, γ) satisfying α + β² + γ³ = 12
 (2) has infinitely many solutions
 (3) does not have any solution
 - (4) has a unique solution

Official Ans. by NTA (4)

SECTION-B

- The total number of two digit numbers 'n', such that 3ⁿ + 7ⁿ is a multiple of 10, is _____.
 Official Ans. by NTA (45)
- **2.** A function f is defined on [-3, 3] as

$$f(x) = \begin{cases} \min\{|x|, 2 - x^2\}, -2 \le x \le 2\\ [|x|], 2 < |x| \le 3 \end{cases}$$

where [x] denotes the greatest integer \leq x. The number of points, where f is not differentiable in (-3, 3) is _____.

Official Ans. by NTA (5)

3. Let $\vec{a} = \hat{i} + \alpha \hat{j} + 3\hat{k}$ and $\vec{b} = 3\hat{i} - \alpha \hat{j} + \hat{k}$. If the area of the parallelogram whose adjacent sides are represented by the vectors \vec{a} and \vec{b} is

 $8\sqrt{3}$ square units, then $\vec{a} \cdot \vec{b}$ is equal to _____:

- Official Ans. by NTA (2)
- 4. If the remainder when x is divided by 4 is 3, then the remainder when (2020 + x)²⁰²² is divided by 8 is _____.
 Official Ans. by NTA (1)
- 5. If the curves x = y⁴ and xy = k cut at right angles, then (4k)⁶ is equal to _____.
 Official Ans. by NTA (4)

6. A line is a common tangent to the circle $(x - 3)^2 + y^2 = 9$ and the parabola $y^2 = 4x$. If the two points of contact (a, b) and (c, d) are distinct and lie in the first quadrant, then 2(a + c) is equal to _____.

Official Ans. by NTA (9)

7. If $\lim_{x\to 0} \frac{ax - (e^{4x} - 1)}{ax(e^{4x} - 1)}$ exists and is equal to b,

then the value of a – 2b is _____. Official Ans. by NTA (5)

- 8. If the curve, y = y(x) represented by the solution of the differential equation $(2xy^2 y)dx + xdy = 0$, passes through the intersection of the lines, 2x 3y = 1 and 3x + 2y = 8, then |y(1)| is equal to _____. Official Ans. by NTA (1)
- 9. The value of $\int_{-2}^{2} |3x^2 3x 6| dx$ is _____.

Official Ans. by NTA (19)

10. A line '*l*' passing through origin is perpendicular to the lines

$$l_1: \vec{r} = (3+t)\hat{i} + (-1+2t)\hat{j} + (4+2t)\hat{k}$$

 $l_2: \vec{r} = (3+2s)\hat{i} + (3+2s)\hat{j} + (2+s)\hat{k}$

If the co-ordinates of the point in the first octant on $'l_2'$ at a distance of $\sqrt{17}$ from the point of intersection of 'l' and 'l_1' are (a, b, c), then 18(a + b + c) is equal to _____. Official Ans. by NTA (44)