

Solid Mechanics (XE-D)

Q.1 – Q.8 Multiple Choice Question (MCQ), carry ONE mark each (for each wrong answer: -1/3).

Q.1	A force F = 40 kN is applied on the hook as shown. The equivalent force- couple system at B is
	y x B A 40 kN
(A)	40 kN in +y direction and $M = 0$
(B)	40 kN in $-y$ direction and M = 0
(C)	40 kN in +y direction and M =4000 Nm counter clockwise
(D)	40 kN in -y direction and $M = 4000$ Nm clockwise

Q.3	A two force member in equilibrium is one in which
(A)	Forces act at two points and forces are collinear
(B)	Forces act at two points and member is always straight
(C)	Forces act at two points but the member is free to carry moment at any point
(D)	Force acts at one point and moment acts at second point

Q.4	If the yield point shear stress obtained from the torsion test of a cylindrical specimen is τy , then what is the maximum value of principal strain at yielding? (μ is Poisson's ratio and E is Young's modulus)
(A)	$\frac{\tau_y}{E}$
(B)	$\frac{(1+\mu)\tau_y}{E}$
(C)	$\frac{\tau_y}{2E}$
(D)	$\frac{(1-\mu)\tau_y}{E}$

Q.5	If the ratio of Young's modulus to bulk modulus of the ratio of shear modulus to the Young's modulus of	a material is 3/2, then of the material is
(A)	1	6
(B)	2/5	2
(C)	1/3	8
(D)	3/5	1.2

Q.6	With respect to the plane of maximum shear stress, which of the following statements is INCORRECT?
(A)	The normal stress on this plane is zero.
(B)	The maximum shear stress is equal to the largest of the one half the difference of principal stresses
(C)	The plane of maximum shear stress occurs at 45° to the principal planes.
(D)	The magnitude of the maximum shear stress is equal to the largest of the radius of the Mohr's circles.

Q.8	A beam having rectangular cross section is subjected to transverse loading. The ratio of maximum shear stress developed in the beam to the average shear stress is
(A)	1.50
(B)	1.25
(C)	1.33
(D)	1.66

Q.9 Numerical Answer Type (NAT), carry ONE mark each (no negative marks).

Q.9 During an earthquake, a structure vibrates and the vibration can be assumed to be in simple harmonic motion at 5 Hz. At a measurement point, the RMS value of acceleration is 10 m/s². The approximate amplitude of motion (in mm) at this point (*rounded off to two decimal places*) is _____

Q. 10–Q. 15 Multiple Choice Question (MCQ), carry TWO marks each (for each wrong answer: -2/3).

Q.11	For a state of plane strain, the normal strains are given by $\epsilon xx = 1000 \times 10-6$, $\epsilon yy = 200 \times 10-6$ and the maximum shear strain is $\gamma max = 1000 \times 10-6$. The value of shear strain γxy for this strain state is
(A)	600×10^{-6}
(B)	183×10^{-6}
(C)	1000×10^{-6}
(D)	800×10^{-6}

Q.12	A thin cylinder (closed at its ends) of radius r and thickness t ($r \gg t$) is subjected to internal pressure p. The maximum shear stress in the wall of the cylinder is
(A)	$\frac{pr}{t}$
(B)	$\frac{pr}{2t}$
(C)	$\frac{pr}{4t}$
(D)	$\frac{3pr}{2t}$

Q.13	The truss shown is subjected to a force P. All members of the truss have the same length L. The reaction at A and force in member AB are P
(A)	$\frac{P\sqrt{3}}{4}$ and $\frac{P}{2}$
(B)	$\frac{P\sqrt{3}}{8}$ and $\frac{P\sqrt{3}}{4}$
(C)	$\frac{P\sqrt{3}}{4}$ and $\frac{P}{4}$
(D)	$P \text{ and } \frac{P}{4}$

Solid Mechanics (XE-D)

Q. 16 – Q. 22 Numerical Answer Type (NAT), carry TWO marks each (no negative marks).

Q.19	At room temperature of 25°C, a gap of 1 mm exists between the ends of the rods 1 and 2 as shown. Given the cross section area A of the rods is 1500 mm ² , Young's modulus $E = 75$ GPa and the coefficient of thermal expansion $\alpha = 23 \times 10^{-6}$ /°C. When the temperature has reached 150°C, the magnitude of normal stress in each of the rods (in MPa, rounded off to two decimal places) is
	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1$

Q.20	A tube of inner radius 4 cm and outer radius 5 cm can carry a maximum torque of T. This tube is now replaced by a solid circular shaft of the same material. The minimum radius of the solid circular shaft (in cm, rounded off to two decimal places) to carry the same amount of torque T is

Q.21 In System A, a rectangular block of mass M is centrally supported on a spring of stiffness K as shown. In the System B, the mass is hinged at one of its ends and is supported centrally by the spring. The ratio of natural frequency of System B to that of System A (rounded off to two decimal places) is ______

Q.22	A coronavirus droplet of mass 1 microgram ejects from the mouth of a patient with a velocity of 0.7 m/s and travels through air. The gravitational force experienced by it can be neglected due to the buoyancy effect
	However, the droplet experiences air drag force proportional to its velocity and the drag coefficient is given as 1.0μ N-s/m. The distance travelled by
	the droplet before its velocity drops to 10% of its initial velocity (in m, rounded off to two decimal places) is

END OF THE QUESTION PAPER