

JEE-Main-26-02-2021-Shift-2 (Memory Based) PHYSICS

Question: If a wire of length *l* has a resistance of R, is stretched by 25%. The percentage change in its resistance is?

Options:

(a) 25% (b) 50% (c) 45.25% (d) 56.25% **Answer:** (d) **Solution:** $R = \rho \frac{l}{A} = \rho \frac{l^2}{V} \quad (\because V = Al)$ $R' = \rho \frac{(1.25)^2 l^2}{V} = 1.5625R$ $\% R = \left(\frac{R'-R}{R}\right) 100 = (1.5625-1) \times 100$ = 56.25%

Question: A chord is tied to a wheel of moment of inertia I and radius r. The other end is attached to a mass 'm' as shown. If the mass 'm' falls by a height 'h' then the square of angular of speed of the wheel is?

Options:

(a)
$$\frac{mgh}{I + mr^2}$$

(b)
$$\frac{2mgh}{I + mr^2}$$

(c)
$$\frac{2mgh}{2I + mr^2}$$

(d)
$$\frac{mgh}{2I + mr^2}$$

Answer: (b)
Solution:

Considering no slipping between chord and wheel and considering no energy loss due to friction.

So, by Energy Conservation:-

$$mgh = \frac{1}{2}mv^{2} + \frac{1}{2}I\omega^{2}$$

$$\Rightarrow mgh = \frac{1}{2}m(\omega r)^{2} + \frac{1}{2}I\omega^{2} \qquad (\because v = \omega r)$$

$$\Rightarrow \omega^{2} = \frac{2mgh}{mr^{2} + I}$$

Question: What is the recoil velocity of Hydrogen atom when a photon is emitted due to corresponding transition from n = 5 to n = 1. (R = Rydberg's constant. $m_H = mass$ of hydrogen atom)

Options:

(a) $\frac{hR}{m_H}$ (b) $\frac{hR}{25m_H}$ (c) $\frac{4hR}{m_H}$

(d)
$$\frac{25 m_H}{25 m_H}$$

Answer: (d)

Solution:

Energy released during transition of e^{-} from n = 5 to n = 1

$$\Rightarrow E = E_5 - E_1 = Rhc \left(-\frac{1}{(5)^2} - \left(\frac{-1}{(1)^2} \right) \right)$$
$$\Rightarrow E = \frac{24}{25} Rhc \dots (i)$$

So momentum of Photon released would be:-

$$\Rightarrow E = mc^2 = (mc).c = p.c$$

Using equation (i)

$$\Rightarrow p = \frac{E}{c} = \frac{24}{25} Rh$$

So Recoil velocity of H-atom would be: By conservation of linear Momentum.

$$\Rightarrow m_H v_H = p = \frac{24}{25} Rh$$
$$v_H = \frac{24}{25} \frac{Rh}{m_H}$$

Question: For earth's gravitation

Given: $[g_A = g_C < g_B]$. Find $\frac{OA}{AB}$.

Options:

(a) 1 : 1 (b) 2 : 3 (c) 4 : 5 (d) 4 : 9 Answer: (c) Solution: $\Rightarrow g_{c} = \frac{GM}{(R+R/2)^{2}} = \frac{4}{9} \frac{GM}{R^{2}} = \frac{4}{9}g$ $\Rightarrow g_{A} = g \frac{x}{R} \text{ (where } x = OA)$ So, if $g_{A} = g_{C}$ $\Rightarrow \frac{4}{9}g = g \frac{x}{R}$ $\Rightarrow x = \frac{4}{9}R$ To find :- $\frac{OA}{AB} = \frac{x}{R-x} = \frac{4}{5}$ (Where AB=O Question: Find Dimension of $\frac{C}{V}$? Options:

(a) $\left[M^{-2}L^{-4}T^{7}A^{3} \right]$ (b) $\left[M^{2}L^{4}T^{-6}A^{-2} \right]$ (c) $\left[M^{2}L^{-4}T^{6}A^{2} \right]$ (d) $\left[M^{-2}L^{4}T^{-6}A^{2} \right]$ Answer: (a)

Solution:

$$\frac{C}{V} = \frac{Q}{V^2} = \frac{Q}{\left(W/Q\right)^2} = \frac{Q^3}{W^2} = \left(\frac{It}{W^2}\right)^2$$
$$\left[\frac{C}{V}\right] = \frac{\left[It\right]^3}{\left[W\right]^2} = \frac{A^3T^3}{\left(ML^2T^{-2}\right)^2}$$
$$= M^{-2}L^{-4}T^7A^3$$

(Where AB=OB-OA and OB=R)

Question: An aeroplane with its wings spread 10 m is flying with speed 180 kph in horizontal direction. The total intensity of earth's field is 2.5×10^{-4} Tesla and angle of dip is 60°. Then find emf induced between the tips of the plane wings.

Options:

(a) 108 mV (b) 54 mV (c) 216 mV (d) 140 mV **Answer:** (a) **Solution:**

 B_{V}

$$V = 180 \, km \, / \, h = \frac{180 \times 5}{18} = 50 \, m \, / \, s$$
$$|E| = B v l v = \frac{2.5\sqrt{3}}{2} \times 10^{-4} \times 10 \times 50$$
$$= 1082 \times 10^{-4} \, V = 108 \times 10^{-3} \, V = 108 \, mV$$

Question: A person walks parallel to a 50 cm wide plane mirror as shown. How much distance will he be able to see the image of a source placed 60 cm in point of it?

Options:

(a) 50 cm
(b) 100 cm
(c) 150 cm

Man can see image by while traversing MM' Now,

 $\frac{25}{60} = \frac{x}{180} \Longrightarrow x = 75$ $MM' = 2x = 150 \, cm$

Question: Find the time taken by the block to reach the bottom of inclined plane. E = 200 i N/C, M = 1 kg, q = 5 mC, g = 10 m/s², $\mu = 0.2$

Options:

(a) 1.35 s (b) 1.65 s (c) 1.9 s

(d) 2.3 s Answer: (a)

Solution:

Net force along the incline

 $F = mg \sin \theta - (\mu N + qE \cos \theta)$ = $mg \sin \theta - \mu (mg \cos \theta + qE \sin \theta) - qE \cos \theta$ = $1 \times 10 \sin 30 - 0.2 (1 \times 10 \times \cos 30 + 200 \times 5 \times 10^{-3} \times \sin 30) - 200 \times 5 \times 10^{-3} \cos 30$ = $5 - 0.2 (5\sqrt{3} + 0.5) - \sqrt{3}/2$ = 2.3N $a = \frac{F}{m} = \frac{2.3}{1} = 2.3 m/s^2$ Time taken to slide down 2 m long

Incline $t = \sqrt{\frac{25}{a}} = \sqrt{\frac{2 \times 2}{2.3}} = 1.32 \, s$

Question: Statement 1: A seconds pendulum, has a time period of 1 second.

Statement 2: It takes precisely 1 second to move between the two extreme position. **Options:**

(a) Statement 1 is false, Statement 2 is true

(b) Statement 1 is true, Statement 2 is true

(c) Statement 1 is true, Statement 2 is false

(d) Statement 1 is false, Statement 2 is false

Answer: (a)

Solution:

[Statement 1 is false, Statement 2 is true]

A seconds pendulum is a pendulum whose period is precisely two seconds; one second for a swing in one direction and one second for the return swing.

So it will take 1 second to move between two extreme positions.

Thus statement 1 is false and statement 2 is true.

Question: Velocity v/s position graph of a body performing SHM is

Options:

(a) ellipse (b) circle (c) parabola (d) straight line Answer: (a) Solution: For SHM $x = A \sin \omega t$...(i) $v = \frac{d(x)}{dt} = A\omega\cos\omega t$...(ii) From equation (i) $\sin \omega t = \frac{x}{A} \Rightarrow \sin^2 \omega t = \frac{x^2}{A^2}$...(iii) From equation (ii) $\cos \omega t = \frac{v}{A\omega} \Longrightarrow \cos^2 \omega t = \frac{v^2}{A^2 \omega^2} \qquad \dots (iv)$ Adding equation (iii) and (iv)

 $\sin^2 \omega t + \cos^2 \omega t = \frac{x^2}{A^2} + \frac{v^2}{A^2 \omega^2}$ $\Rightarrow 1 = \frac{x^2}{A^2} + \frac{v^2}{A^2 \omega^2}$

This is clearly on equation of ellipse.

Question: A body starts from rest and moves with constant acceleration a, for time t_1 , then it retards uniformly with a_2 in time t_2 . Find t_1/t_2 .

Options:

(a) $\frac{a_1}{a_2}$ (b) $\frac{a_2}{2}$ a_1 (c) 1 (d) None of these Answer: (b) Solution: For acceleration period, $u = 0, v = u, a = a_1, t = t_1$ So, $v = u = at \Rightarrow v = 0 + a_1 t_1 \Rightarrow t_1 = \frac{v}{a_1}$...(i) For retardation period, $u = v, v = 0, a = -a_2, t = t_2$ So, $v = u + at \Rightarrow 0 = v - a_2 t_2$, $\Rightarrow t_2 = \frac{v}{a_2}$...(ii) On dividing equation (i) by (ii) \rightarrow $\frac{t_1}{t_2} = \frac{a_2}{a_1}$

Question: A wire has length l_1 when tension in it is $T_1 \& l_2$ when tension is T₂. Find the natural length of wire.

Options: (a) $\frac{T_1 l_1 - T_2 l_2}{T_1 - T_2}$ (b) $\frac{T_1 l_2 - T_2 l_1}{T_1 - T_2}$ (c) $\frac{T_1 l_1 + T_2 l_2}{T_1 + T_2}$ (d) $\frac{T_1 l_2 + T_2 l_1}{T_1 + T_2}$ Answer: (b)

Solution:

Let the natural length of wire be l_0 .

Using Hooke's law, $Y = \frac{Tl_0}{A\Delta l}$ Where $\Delta l = l - l_0$ We get $l - l_0 = \frac{Tl_0}{AY}$ Case 1: Tension T₁ and length of wire $l = l_1$ $\therefore l_1 - l_0 = \frac{T_1 l_0}{AY} \dots (1)$ Case 2: Tension is T₂ and length of wire $l = l_2$ $\therefore l_2 - l_0 = \frac{T_2 l_0}{AY} \dots (2)$

Dividing both equations $\frac{l_1 - l_0}{l_2 - l_0} = \frac{T_1}{T_2}$

$$\implies l_0 = \frac{l_1 T_2 - l_2 T_1}{T_2 - T_1}$$

Question: A radioactive sample is undergoing α -decay. At time t₁, its activity is A and at another time t₂, the activity is $\frac{A}{5}$. What is the average life time for the sample

Options:

(a) $\frac{t_2 - t_1}{\ln 2}$ (b) $(t_2 - t_1) \ln 5$ (c) $\frac{t_2 - t_1}{\ln 5}$ (d) $\frac{t_2 - t_1}{2}$ Answer: (c) Solution: Activity = $\left| \frac{dN}{dt} \right|$ At time t₁ $A = N_0 \lambda e^{-\lambda t_1}$...(1) At time t₂ $\frac{A}{5} = N_0 \lambda e^{-\lambda t_2}$...(2) From eq (1) &(2) $5 = \frac{e^{-\lambda t_1}}{e^{-\lambda t_2}}$ $5 = e^{-\lambda(t_1 - t_2)}$ $\ln 5 = -\lambda \left(t_1 - t_2 \right)$ $\ln 5 = \lambda \left(t_2 - t_1 \right)$ $\lambda = \frac{\ln 5}{t_1 - t_1}$

Mean lifetime given by $\tau = \frac{1}{2}$

$$\tau = \frac{t_2 - t_1}{\ln 5}$$

Question: A bike starts from rest and accelerates uniformly at 'a' m/s^2 for time ' t_1 ' seconds. Then it retards with deceleration 'a' for time ' t_2 ' seconds with till it comes to rest. Find the average speed for the entire duration. **Options:**

 $(a)\frac{a(t_1+t_2)}{2}$ (b) $\frac{at_2}{2}$ (c) $\frac{at_1^2}{2}$ (d) at_1 Answer: (b) Solution: Average speed = $\frac{\text{total distance travelled}}{1}$ total time taken Initial speed is zero. And acceleration is a. v = u + atafter time t₁ $v = at_1$ & $S_1 = \frac{1}{2} a t_1^2$ Now, v = u + at $o = at_1 - at_2$ $at_1 = at_2 \Longrightarrow t_1 = t_2$ $S_2 = at_1t_2 - \frac{1}{2}at_2^2$ Total distance $= S_1 + S_2$ $=\frac{1}{2}at_{1}^{2}+at_{1}t_{2}-\frac{1}{2}at_{2}^{2}$ $=\frac{1}{2}at^{2}+at^{2}-\frac{1}{2}at^{2}$ $S = at^2$ $t_1 + t_2 = 2t$ $\langle v \rangle = \frac{at^2}{2t}$ $=\frac{at}{2}=\frac{at_2}{2}$

Question: If incident say, refracted ray and normal say are represented by unit vectors $\vec{a}, \vec{b} and \vec{c}$ then relation between them is?

Options:

(a) $\vec{a} - \vec{b} = \vec{c}$ (b) $\vec{a} \cdot (\vec{b} \times \vec{c}) = 0$ (c) $\vec{a} + \vec{c} = 2\vec{b}$ (d) $\vec{a} \times (\vec{b} \times \vec{c}) = 0$

Answer: (b) Solution:

Let $\mu_1 < \mu_2$

All three unit vectors are coplanar, we can say this from first law of refraction Scalar triple product is given by $\vec{A}.(\vec{B} \times \vec{C})$

If $\vec{A}, \vec{B} \& \vec{C}$ vectors are coplanar then $\vec{A}.(\vec{B} \times \vec{C}) = 0$...(i) From eq. (i) we have $\hat{a}.(\hat{b} \times \hat{c}) = 0$

Question: If the internal energy of a gas is U = 3PV + 4, then the gas can be? Options:

(a) Monoatomic (b) Diatomic (c) Polyatomic (d) Either mono or diatomic Answer: (c) Solution: Given, U = 3PV + 4We have PV = nRT U = 3(nRT) + 4Differentiating wrt temperature dU = 3.(nRdT) + 0 $\frac{nfRdT}{2} = 3(nRdT)$ $\frac{f}{2} = 3 \Rightarrow f = 6$

It would be triatomic, suitable option is Polyatomic.

JEE-Main-26-02-2021-Shift-2 (Memory Based)

CHEMISTRY

Question: Increasing order of Δ_{eg} H of the following elements: O, S, Se, Te (Consider both sign and magnitude) **Options:**

- (a) S < Se < Te < O
- (b) O < S < Se < Te
- (c) S < O < Se < Te

(d) O < Te < Se < S

Answer: (a)

Solution: The values are,

S = -200 kJ/mol

Se = -195 kJ/mol

Te = -190 kJ/mol

$$O = -141 \text{ kJ/mol}$$

So, considering both sign and magnitude, the order should

S < Se < Te < O

Question: Hybridisation order of the carbon atom from left to right is CH₂=C=CH–CH₃ **Options:**

- (a) sp^2 , sp, sp^2 , sp^3
- (b) sp^2 , sp^2 , sp^2 , sp^3
- (c) sp^2 , sp, sp, sp^3
- (d) sp, sp, sp^2 , sp^3

Answer: (a)

Solution:

$$H_{H^{1}} = C_{2} = C_{3} = C_{4} = H_{H^{1}}$$

 $1 - sp^2$ 2 - sp

 $3-sp^2$

 $4-sp^3$

Question: Match the following

Column-I	Column-II
(A) Siderite	(P) Fe
(B) Calamine	(Q) Al
(C) Cryolite	(R) Zn
(D) Malachite	(S) Cu

Options:

(a) $A \rightarrow P$; $B \rightarrow R$; $C \rightarrow S$; $D \rightarrow Q$ (b) $A \rightarrow P$; $B \rightarrow S$; $C \rightarrow Q$; $D \rightarrow Q$ (c) $A \rightarrow P$; $B \rightarrow R$; $C \rightarrow Q$; $D \rightarrow S$ (d) $A \rightarrow Q$; $B \rightarrow R$; $C \rightarrow P$; $D \rightarrow S$ Answer: (c) Solution: Siderite (FeCO₃) is an ore of iron Calamine (ZnCO₃) is an ore of zinc Cryolite (Na₃AlF₆) is an ore of Aluminium Malachite (CuCO₃, Cu(OH)₂) is an ore of copper.

Question: Which of the following groups contains both acidic oxides: **Options:**

- (a) N₂O, BaO
- (b) CaO, SiO₂
- (c) B₂O₃, SiO₂
- (d) B_2O_3 , CaO

Answer: (c)

Solution:

 $N_2O \rightarrow Neutral$

BaO, CaO \rightarrow Basic

B₂O₃, SiO₂ \rightarrow Acidic

Question: Match the following.

Options:

- (a) $A \rightarrow P$; $B \rightarrow Q$; $C \rightarrow R$; $D \rightarrow S$
- (b) $A \rightarrow Q$; $B \rightarrow S$; $C \rightarrow P$; $D \rightarrow R$
- (c) $A \rightarrow Q$; $B \rightarrow S$; $C \rightarrow R$; $D \rightarrow P$
- (d) $A \rightarrow S; B \rightarrow Q; C \rightarrow P; D \rightarrow R$

Answer: (b)

Solution: Sandmeyer takes place with Cu⁺

Gattermann takes place with Cu^[O]

Alkyl halide coupling is Wurtz

Aryl halide coupling is Fittig Reaction

Question: Match the following.

Molecule	Bond order
(A) Ne ₂	(P) 1
(B) N ₂	(Q) 2
(C) F ₂	(R) 0
(D) O ₂	(8) 3

Options:

(a) $A \rightarrow R$; $B \rightarrow S$; $C \rightarrow Q$; $D \rightarrow P$ (b) $A \rightarrow R$; $B \rightarrow S$; $C \rightarrow P$; $D \rightarrow Q$ (c) $A \rightarrow R$; $B \rightarrow P$; $C \rightarrow Q$; $D \rightarrow S$ (d) $A \rightarrow R$; $B \rightarrow Q$; $C \rightarrow P$; $D \rightarrow P$ Answer: (b) Solution: $B.O = \frac{No. \text{ of bonding } e^- - No. \text{ of antibonding } e^-}{2}$ a) $Ne_2 = \frac{10-10}{2} = 0$ b) $N_2 = \frac{10-4}{2} = 3$ c) $F_2 = \frac{10-8}{2} = 1$ d) $O_2 = \frac{10-6}{2} = 2$

Question: Final product of the reaction

Options:

(a)

Solution: Allylic position is reactive for nucleophilic substitution reaction

Question: False statement about Calgon is:

Options:

- (a) Calgon is also called as graham's salt
- (b) Calgon method does not precipitate Ca²⁺
- (c) Calgon contains metal which is 2^{nd} most abundant in earth's crust
- (d) Calgon is polymeric and water soluble

Answer: (c)

Solution:

* Calgon (Sodium hexametaphosphate) is also known as Graham's salt. It has a polymeric chain structure and is water soluble

* When added to hard water, the following reaction takes place

$$Na_6P_6O_{18} \rightarrow 2Na^+ + Na_4P_6O_{18}^{2-}$$

Calgon

 $M^{2+} + Na_6P_6O_{18}^{2-} \rightarrow [Na_2MP_6O_{18}]^{2-} + 2Na^+$ (M = Mg, Ca)

The complex ion keeps the Mg^{2+} and Ca^{2+} ion in the solution and not precipitated

* Second most abundant metal in earth's crust is iron and is not present in Calgon

Question: Final product of the reaction is

Options:

(a)

(b)

(c)

(d)

Answer: (c) Solution:

Question: 2,4 DNP test is given by:

Options:

(a) Aldehyde

(b) Amine

(c) Ester

(d) Halogens

Answer: (a)

Solution:

Both aldehyde and ketones gives the 2,4 DNP test

Question: Match the following:

Column-I	Column-II
(A) Sodium carbonate	(P) Deacon
(B) Titanium	(Q) Castner-kellner
(C) Chlorine	(R) Van-arkel
(D) Sodium Hydroxide	(S) Solvay

Options:

- (a) $A \rightarrow S; B \rightarrow R; C \rightarrow Q; D \rightarrow P$
- (b) $A \rightarrow Q$; $B \rightarrow R$; $C \rightarrow P$; $D \rightarrow S$
- (c) A \rightarrow S; B \rightarrow R; C \rightarrow P; D \rightarrow Q
- (d) $A \rightarrow Q$; $B \rightarrow P$; $C \rightarrow R$; $D \rightarrow S$

Answer: (c)

Solution:

Sodium carbonate is manufactured by Solvay process.

Titanium is refined by Van-Arkle method.

Chlorine is manufactured by Deacon's process.

Sodium hydroxide is manufactured by Castner-kellner process.

Question:

Options:

Answer: (d) Solution:

Question: Match the following.

Column-I	Column-II
(A) Sucrose	(P) α -D glucose and β -D fructose
(B) Lactose	(Q) β -D galactose and β -D glucose
(C) Maltose	(R) α -D glucose and α -D glucose
(D) Cellulose	(S) β -D glucose and β -D glucose

Options:

Answer: (a)
(d) $A \rightarrow S; B \rightarrow P; C \rightarrow Q; D \rightarrow R$
(c) $A \rightarrow R; B \rightarrow S; C \rightarrow P; D \rightarrow Q$
(b) $A \rightarrow Q$; $B \rightarrow R$; $C \rightarrow S$; $D \rightarrow P$
(a) $A \rightarrow P$; $B \rightarrow Q$; $C \rightarrow R$; $D \rightarrow S$

Solution:

Question: Seliwanoff and Xanthoproteic test are respectively used for the identification of: **Options:**

- (a) Proteins, Ketoses
- (b) Ketoses, Proteins
- (c) Aldoses, Ketoses
- (d) Ketoses, Aldoses

Answer: (b)

Solution:

1) Seliwanoff test is for carbohydrate. It distinguishes between aldoses and ketose sugar

2) Xanthoproteic test is for protein

Question: What is the ratio of number of octahedral voids per unit cell in HCP/CCP?

Answer: 1.50

Solution: The number of octahedral voids is equal to effective number of atoms in both HCP and CCP structures

Thus,

number of octahedral voids in HCP = 6

number of octahedral voids in CCP = 4

Ratio =
$$\frac{6}{4}$$
 = 1.5

JEE-Main-26-02-2021-Shift-2 (Memory Based) MATHEMATICS

Question: $\tan^{-1} a + \tan^{-1} b = \frac{\pi}{4}$. Find the value of $a + b - \left(\frac{a^2 + b^2}{2}\right) + \left(\frac{a^3 + b^3}{3}\right) - \left(\frac{a^4 + b^4}{5}\right) \dots$ **Options:** (a) (b) (c) (d) Answer: () Solution: $\tan^{-1} a + \tan^{-1} b = \frac{\pi}{4}$ $\tan^{-1}\left[\frac{a+b}{1-ab}\right] = \frac{\pi}{4}$ At b = 1 - ab(1+a)(1+b) = 2Now, $(a+b) - \left(\frac{a^2+b^2}{2}\right) + \left(\frac{a^3+b^3}{3}\right) \dots$ $= \left(a - \frac{a^2}{2} + \frac{a^3}{3} - \frac{a^4}{4} + \dots\right) + \left(b - \frac{b^2}{2} + \frac{b^3}{3} - \frac{b^4}{4} + \dots\right)$ $= \log(1+a) + \log(1+b)$ $= \log(1+a)(1+b)$ $= \log 2$

Question: 3, 3, 4, 4, 4, 5, 5 find the probability for 7 digit number such that number is divisible by 2 **Options:**

(a) $\frac{1}{7}$ (b) $\frac{3}{7}$ (c) $\frac{4}{7}$ (d) $\frac{6}{7}$ Answer: (b) Solution:

Numbers given are 3, 3, 4, 4, 4, 5, 5

Total number of 7 digit number is $\frac{7!}{2! \cdot 3! \cdot 2!} = 210$

Number divisible by '2' has '4' at unit place

$$\therefore$$
 Total favourable case = $\frac{1 \times 66}{2! \cdot 2! \cdot 2!} = 90$

 \therefore Required probability = $\frac{90}{210} = \frac{3}{7}$

Question: Mirror image of (1, 3, 5) w.r.t plane 4x - 5y + 2z = 8 is (α, β, γ) , then

 $5(\alpha + \beta + \gamma) = ?$

Options:

(a) (b) (c) (d)

Answer: ()

Solution:

Equation of line perpendicular to plane 4x - 5y + 2z = 8 and passing through (1, 3, 5) is

$$\frac{x-1}{4} = \frac{y-3}{-5} = \frac{z-5}{2} = \lambda$$

Any general point on this line is $P(4\lambda + 1, 3 - 5\lambda, 2\lambda + 5)$

Let P lies on plane,

 $\therefore 4(4\lambda+1) - 5(-5\lambda+3) + 2(2\lambda+5) = 8$ $45\lambda = 9$ $\Rightarrow \lambda = \frac{1}{5}$ $\therefore P = \left(\frac{9}{5}, 2, \frac{27}{5}\right)$

As P is mid point of (1, 3, 5) and (α, β, γ)

$$\therefore \alpha = \frac{13}{5}, \ \beta = 1, \ \gamma = \frac{29}{5}$$

$$\alpha + \beta + \gamma = \frac{47}{5}$$
$$5(\alpha + \beta + \gamma) = 47$$

Question: f(x) is differentiable function at x = a, such that f'(a) = 2, f(a) = 4. Find

 $\lim_{x \to a} \frac{xf(a) - af(x)}{x - a}$ Options: (a) (b) (c) (d) Answer: () Solution: $\lim_{x \to a} \frac{xf(a) - af(x)}{x - a}$ On applying L-Hospital's Rule $\lim_{x \to a} \frac{f(a) - af'(x)}{1} = f(a) - af'(a) = 4 - 2a$

Question: The locus of mid point of the line segment from (3, 2) to the circle $x^2 + y^2 = 1$ which touch the circle ay point P is a circle with radius r. what is the value of r **Options:**

(a) 1 (b) $\frac{1}{2}$ (c) $\frac{1}{3}$ (d) $\frac{1}{4}$ Answer: (b) Solution:

$$\frac{c+3}{2}, \frac{2+5}{2}$$

$$h = \frac{c+3}{2}, k = \frac{2+5}{2}$$

$$2h-3 = c, 2k-2 = 5$$

$$4h^{2}+9-12h+4k^{2}+4-8k = 1$$

$$h^{2}+k^{2}+\frac{9}{4}-3h-2k+1-\frac{1}{4}=0$$

$$r = \sqrt{9+1-\frac{9}{4}-1+\frac{1}{4}}$$

$$= \frac{1}{2}$$

Question: The slope of the tangent to curve is $\frac{xy^2 + y}{x}$ and it intersects the line x + 2y = 4 at x = -2, then the value of 'y' is (3, y) lies on the curve? Options:

(a)
(b)
(c)
(d)
Answer: ()
Solution:

$$\frac{dy}{dx} = \frac{xy^2 + y}{x} \Rightarrow \frac{dy}{dx} - \frac{y}{x} = y^2$$

$$\frac{1}{y^2} \frac{dy}{dx} - \frac{1}{yx} = 1$$
Put $-\frac{1}{y} = t \Rightarrow \frac{1}{y^2} \frac{dy}{dx} = \frac{dt}{dx}$

$$\Rightarrow \frac{dt}{dx} + \frac{t}{x} = 1$$
I.F. = $e^{\int \frac{dx}{x}} = \ln x = x$

$$\therefore t(x) = \int x \, dx = \frac{x^2}{2} + C$$

$$\Rightarrow \frac{-x}{y} = \frac{x^2}{2} + C \text{ (passes through (3, y))}$$

$$\Rightarrow -\frac{3}{y} = \frac{9}{2} + C \Rightarrow -\frac{3}{y} - \frac{9}{2}$$

$$\Rightarrow -\frac{x}{y} = \frac{x^2}{2} - \frac{9}{2} - \frac{3}{y}$$

$$\Rightarrow \frac{3-x}{y} = \frac{x^2 - 9}{2}$$

$$\Rightarrow y = \frac{2(3-x)}{x^2 - 9}$$

At $x = -2$; $y = \frac{2 \times 5}{(-5)} = -2$

Question: $f(x) = \int_{1}^{x} \frac{\ln(1+t)}{t} dt$, $f(e) + f\left(\frac{1}{e}\right) =$ Options: (a) (b) (c) (d) Answer: ()

Solution:

$$f(x) = \int_{1}^{x} \frac{\ln(1+t)dt}{t} : f\left(\frac{1}{x}\right) = \int_{1}^{\frac{1}{x}} \frac{\ln(1+t)}{t}dt$$

Let $t = \frac{1}{u} \Rightarrow dt = -\frac{1}{u}du$

$$\therefore f\left(\frac{1}{x}\right) = \int_{1}^{x} \frac{\ln\left(1 + \frac{1}{u}\right)}{\left(\frac{1}{u}\right)} \left(-\frac{1}{u}\right) du = -\int_{1}^{x} \frac{\ln\left(\frac{1 + u}{u}\right)}{u} du$$

$$\therefore f(x) + f\left(\frac{1}{x}\right) = \int_{1}^{x} \left[\frac{\ln(1+t)}{t} - \frac{\ln(1+t)}{t} + \frac{\ln t}{t}\right] dt$$
$$f(x) + f\left(\frac{1}{x}\right) = \int_{1}^{x} \frac{\ln t}{t} dt = \left[\frac{(\ln t)^{2}}{2}\right]_{1}^{x} = \frac{1}{2}\ln^{2} x$$

$$\therefore f(e) + f\left(\frac{1}{e}\right) = \frac{1}{2}\ln^2 e = \frac{1}{2}$$

Question: $f(x) = \int_{1}^{x} e^{t} f(t) dt + e^{x}$; f(x) is a differentiable function $x \in R$. Then f(x) =**Options:** (a) (b) (c) (d) Answer: () Solution: $f(x) = \int_{1}^{x} e^{t} f(t) dt + e^{x}$ $f'(x) = e^x f(x) + e^x$ $\frac{dy}{dx} = e^x (y+1)$ $\int \frac{dy}{(y+1)} = \int e^x \, dx$ $\log|y+1| = e^x + C$ $y+1=\pm e^C e^{e^x}$ $y+1=k.e^{e^x}$ (Put $\pm e^C=k$) At x = 1, y = 0 $\Rightarrow 1 = ke^{e}$ $k = \frac{1}{\rho^e}$ $\Rightarrow y+1=\frac{e^{e^x}}{e^e}$ $\Rightarrow f(x) = \frac{e^{e^x} - 1}{e^e}$

Question: If A_1 is area between the curves $y = \sin x$, $y = \cos x$ and y-axis for $0 \le x \le \frac{\pi}{2}$ and A_2 is area between $y = \sin x$ and $y = \cos x$ and x-axis for $0 \le x \le \frac{\pi}{2}$, the find $\frac{A_2}{A_1}$

Options:

(a) (b) (c) (d) Answer: () Solution:

$$A_{1} = \int_{0}^{\frac{\pi}{4}} (\cos x - \sin x) dx = (\sin x + \cos x)_{0}^{\frac{\pi}{4}} = \sqrt{2} - 1$$

$$A_{2} = \int_{0}^{\frac{\pi}{4}} \sin x dx + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos x dx = (-\cos x)_{0}^{\frac{\pi}{4}} + (\sin x)_{\frac{\pi}{4}}^{\frac{\pi}{2}}$$

$$= \left(-\frac{1}{\sqrt{2}} + 1\right) + \left(1 - \frac{1}{\sqrt{2}}\right) = 2 - \sqrt{2}$$

$$\frac{A_{2}}{A_{1}} = \frac{2 - \sqrt{2}}{\sqrt{2} - 1} = \sqrt{2}$$

Question: $P_n = \alpha^n + \beta^n$, $\alpha + \beta = 1$, $\alpha\beta = -1$, $P_{n-1} = 11$, $P_{(n+1)} = 29$, then $(P_n)^2$ Answer: 324.00 Solution: $(\alpha + \beta)P_n = (\alpha + \beta)(\alpha^n + \beta^n)$ $(\alpha + \beta)P_n = \alpha^{n+1} + \beta^{n+1} + \alpha\beta(\alpha^{n-1} + \beta^{n-1})$ $\Rightarrow (1)P_n = P_{n+1} - P_{n-1} = 29 - 11 = 18$ $\Rightarrow P_n^2 = 324$

Question: Let A(1, 4) and B(1, -5) be two points let P be the point on $(x-1)^2 + (y-1)^2 = 1$. Find maximum value of $(PA)^2 + (PB)^2$. Answer: 53.00 Solution: Let $P(1 + \cos \theta, 1 + \sin \theta)$ $\therefore PA^2 + PB^2 = \cos^2 \theta + (\sin \theta - 3)^2 + \cos^2 \theta + (\sin \theta + 6)^2$

$$= 2\cos^2\theta + 2\sin^2\theta + 6\sin\theta + 45$$

 $=47+6\sin\theta$

So, it will be maximum when $\sin \theta = 1$

$$\therefore \left(PA^2 + PB^2\right)_{\text{max}} = 47 + 6 = 53$$

Question: Let L be a line of intersection of x + 2y + z = 0 and y + z = 4. If $P(\alpha, \beta, \gamma)$ is foot of perpendicular from (3, 2, 1) on L. Find $21(\alpha + \beta + \gamma)$.

Options: (a) (b) (c) (d) **Answer: 98.00** Solution: D.R. of line L: $\begin{vmatrix} i & j & k \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{vmatrix} = (1, -1, 1)$ Put z = 0 in both planes \Rightarrow y = 4, x = -2 \therefore Equation of line L $\Rightarrow \frac{x+2}{1} = \frac{y+4}{-1} = \frac{z-0}{1} = \lambda$ Let point P on line is $(\lambda - 2, 4 - \lambda, \lambda)$ & A(3, 2, 1) $\therefore AP \perp line$ $\therefore (1)(\lambda-5)+(-1)(2-\lambda)+(1)(\lambda-1)=0$ $\Rightarrow 3\lambda = 8 \Rightarrow \lambda = \frac{8}{3}$ $\Rightarrow P\left(\frac{2}{3}, \frac{4}{3}, \frac{8}{3}\right)$ $\Rightarrow 21(\alpha + \beta + \gamma) = 21\left(\frac{2}{3} + \frac{4}{3} + \frac{8}{3}\right)$

$$=21\left(\frac{14}{3}\right)=98$$

Question: How many four digit numbers are there where g.c.d. with 18 is '3'. **Options:**

(a)
(b)
(c)
(d)
Answer: 1000.00
Solution:
Number of required numbers
= 4 digit numbers divisible by 3 - 4 digit numbers divisible by 6 - 4 digit numbers divisible by 9 + 4digit numbers divisible by 18
= 3000 - 1500 - 1000 + 200
= 1000

Question: The prime factorization of a number '*n*' is given as $n = 2^x \times 3^y \times 5^z$, y + z = 5 and $y^{-1} + z^{-1} = \frac{5}{6}$. Find out the odd divisors of n including 1

Answer: 12.00 Solution:

y + z = 5 : $\frac{1}{y} + \frac{1}{z} = \frac{5}{6} \Rightarrow (y, z) = (2, 3) \text{ or } (3, 2)$

:. Number of odd divisors of $n = 2^x \cdot 3^y \cdot 5^z$ is (y+1)(z+1)

 $= 3 \times 4 = 12$

Question: -16, 8, -4, 2,, A.M and G.M of p^{th} and q^{th} terms are roots of $4x^2 - 9x + 5 = 0$ then p + q =Answer: 10.00 Solution: Given sequence is -16, 8, -4, 2 It is a GP with common ratio $r = -\frac{1}{2}$ Its nth term is $a_n = (-16)\left(-\frac{1}{2}\right)^{n-1}$ Roots of $4x^2 - 9x + 5 = 0$ are $1, \frac{5}{4}$ $\therefore GM \le AM \implies \therefore GM = 1$

Now GM of pth and qth term = $\sqrt{(-16)(-\frac{1}{2})^{p-1} \cdot (-16)(-\frac{1}{2})^{q-1}}$

$$\Rightarrow 16\left(-\frac{1}{2}\right)^{\frac{p+q-2}{2}} = 1$$
$$\Rightarrow \left(-\frac{1}{2}\right)^{\frac{p+q-2}{2}} = \frac{1}{16}$$
$$\Rightarrow \frac{p+q-2}{2} = 4$$
$$\Rightarrow p+q = 10$$

Question: The value of square of slope of the common tangent to the curves $4x^2 + 9y^2 = 36$ and $(2x)^2 + (2y)^2 = 31$

Options:

- (a)
- (b)
- (c)
- (d)

Answer: 3.00

Solution:

Given ellipse are
$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$
 and $\frac{x^2}{\left(\frac{31}{4}\right)} + \frac{y^2}{\left(\frac{31}{4}\right)} = 1$

Let equation of common tangent to ellipse with slope 'm' is

y = mx +
$$\sqrt{9m^2 + 4}$$
 and y = mx + $\sqrt{\frac{31}{4}m^2 + \frac{31}{4}}$
∴ 9m² + 4 = $\frac{31}{4}m^2 + \frac{31}{4}$
⇒ $\frac{5m^2}{4} = \frac{15}{4}$
⇒ m² = 3

Question: $\sum_{n=1}^{18} (x_i - \alpha) = 36$; $\sum_{n=1}^{18} (x_i - \beta)^2 = 90$ and the standard deviation is Find $|\beta - \alpha|$ **Answer: 0.00 Solution:** Let $\alpha = \beta$

: Standard deviation remains unchanged if observations are added or subtracted by a fixed number

$$\therefore S.D. = \sqrt{\frac{\sum_{i=1}^{18} (x_i - \alpha)^2}{18} - \left[\frac{\sum_{i=1}^{18} (x_i - \alpha)}{18}\right]^2}$$
$$= \sqrt{\left(\frac{90}{18}\right) - \left(\frac{36}{18}\right)^2} = 1, \text{ which is given}$$

Hence, $\alpha = \beta$ according to the conditions $\therefore |\beta - \alpha| = 0$

