

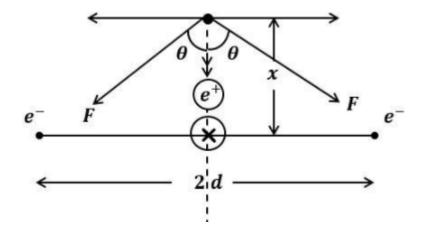
## JEE-Main-24-02-2021-Shift-2

## PHYSICS

**Question:** Two electrons are fixed at a separation of 2d from each other. A proton is placed at the midpoint and displaced slightly in a direction perpendicular to line joining the two electrons. Find the frequency of oscillation of proton.

Options:  
(a) 
$$f = \frac{1}{2\pi} \sqrt{\frac{2ke^2}{md^3}}$$
  
(b)  $f = \frac{1}{2\pi} \sqrt{\frac{ke^2}{md^3}}$   
(c)  $f = \frac{1}{2\pi} \sqrt{\frac{ke^2}{2md^3}}$ 

(d) None of these Answer: (a) Solution:



 $F\cos\theta.2 = m\omega^2 x$ 

$$\Rightarrow \frac{k e.e}{\left(d^{2} + x^{2}\right)} \cdot \frac{2x}{\sqrt{d^{2} + x^{2}}} = m\omega^{2}x$$
$$\Rightarrow \frac{2ke^{2}x}{d^{3}} = m\omega^{2}x \qquad (taking x < < d]$$

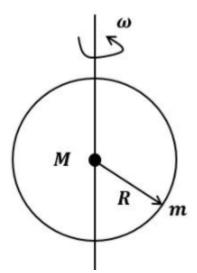
On solving-

$$f = \frac{1}{2\pi} \sqrt{\frac{2ke^2}{md^3}}$$

**Question:** The weight of a person on pole is 48 kg then the weight on equator is? Give [R = 6400 km]**Options:** 



(a) 48 (b) 48.83 (c) 47.84 (d) 47 **Answer:** (c) **Solution:** 



At pole  $\frac{GMm}{R^2} = 48 \, kg \, ...(i)$ At equator  $\frac{GMm}{R^2} - mR\omega^2 = x \, ...(ii)$ Dividing eq. (ii) by eq. (i)  $1 - \frac{\omega^2 R^3}{GM} = \frac{x}{48}$ On putting all the values in this eqn.  $x = 47.83 \, kg.$ 

**Question:** Two bodies A & B have masses 1 kg & 2 kg respectively have equal momentum. Find the ratio of kinetic energy?

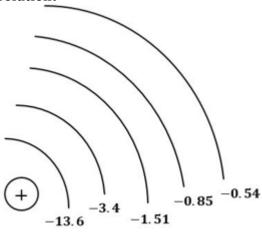
Options: (a) 1: 1 (b) 2: 1 (c) 1: 4 (d) 1: 2 Answer: (b) Solution:  $K = \frac{P^2}{2m}$  $\frac{K_A}{K_B} = \frac{m_B}{m_A}$  [As momentum is same for both]



 $=\frac{2}{1}$ 

**Question:** Which transition in hydrogen spectrum has the maxima frequency? **Options:** 

(a)  $3 \rightarrow 2$ (b)  $5 \rightarrow 4$ (c)  $9 \rightarrow 5$ (d)  $2 \rightarrow 1$ Answer: (d) Solution:



As n increases, difference between  $n^{th}$  and  $(n+1)^{th}$  orbit energy decreases.

So as per given options  $2 \rightarrow 1$  transition will have maximum energy & hence maximum frequency.

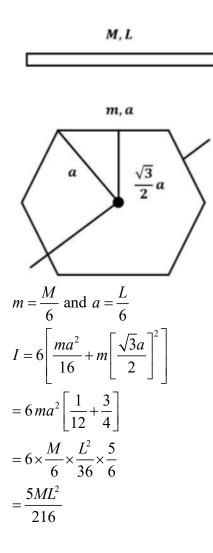
**Question:** A rod of mass M, length L is bent in the form of hexagon. Then MOI about axis passing through geometric centre & perpendicular to plane of body will be ? **Options:** 

## (a) $6ML^2$

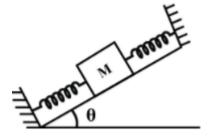
(b) 
$$\frac{ML^2}{6}$$
  
(c)  $\frac{ML^2}{2}$   
(d)  $\frac{5ML^2}{216}$   
**Answer:** (d)

Solution:





Question: Find the time period of SHM of the block of mass M.

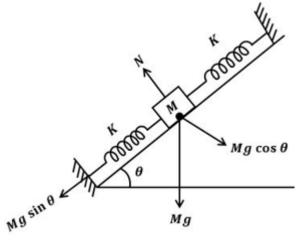


**Options:** 

(a) 
$$T = 2\pi \sqrt{\frac{M}{2K}}$$
  
(b)  $T = 2\pi \sqrt{\frac{M}{K}}$   
(c)  $T = 2\pi \sqrt{\frac{2M}{K}}$   
(d)  $T = 2\pi \sqrt{\frac{M}{4K}}$ 



Answer: (a) Solution:



Constant force doesn't change  $\omega$  of the system. (Constant force means force that has constant magnitude and direction. In the direction of oscillation these forces have constant contribution.)

So, due to parallel combination of springs- $K_{eq} = 2K$ 

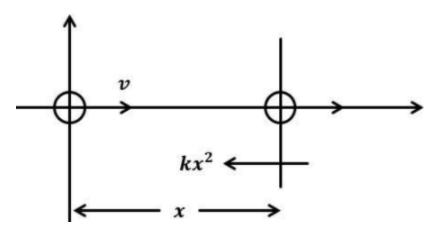
Therefore, 
$$\omega = \sqrt{\frac{K_{eq}}{M}} \Rightarrow T = 2\pi \sqrt{\frac{M}{2K}}$$

**Question:** A particle is projected on x axis with velocity v. A force is acting on it in opposite direction, which is proportional to the square of its position. At what distance from origin the particle will stop. [mass is m and constant of proportionality  $\rightarrow$  k] **Options:** 

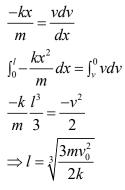
(a) 
$$\sqrt[3]{\frac{mv_0^2}{k}}$$
  
(b)  $\sqrt[3]{\frac{3mv_0^2}{k}}$   
(c)  $\sqrt[3]{\frac{3}{2}\frac{mv_0^2}{k}}$   
(d)  $\sqrt[3]{\frac{mv_0^2}{2k}}$ 

Answer: (c) Solution:



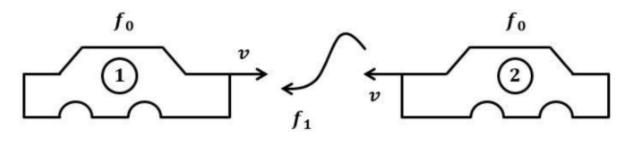


Let particle will stop at l distance



**Question:** Two cars are approaching each other each moving with a speed v. Find the beat frequency as heard by driver of one car both are emitting sound of frequency  $f_0$ . **Options:** 

(a) Beat frequency 
$$= \frac{2vf_0}{C - v}$$
  
(b) Beat frequency  $= \frac{2vf_0}{C + v}$   
(c) Beat frequency  $= \frac{vf_0}{C - v}$   
(d) None of these  
**Answer:** (a)  
**Solution:**



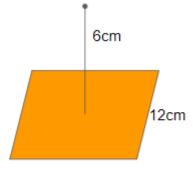
 $f_B = f_1 - f_2$ 

[Where  $f_{B}$  is beat frequency]



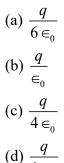
$$= f_0 \left( \frac{C + v}{C - v} \right) - f_0$$
$$\Rightarrow f_B = \frac{2vf_0}{C - v}$$

Question: Find the flux of point charge 'q' through the square surface ABCD as shown.

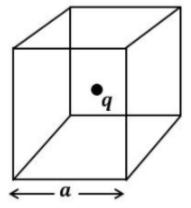








Solution:



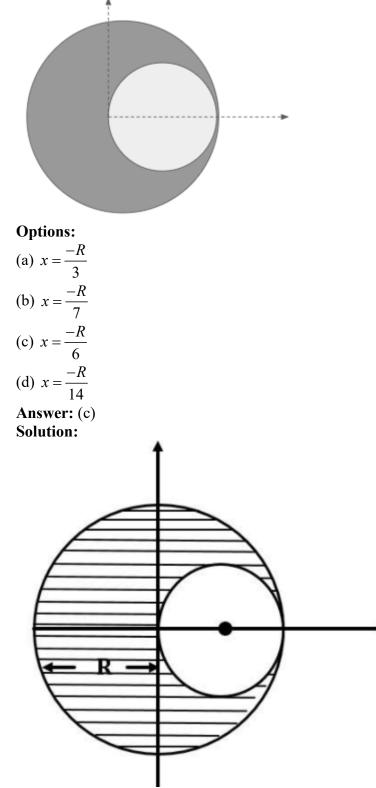
Lets assume a cube of slide a and charge is at it's centre.

So, from whole cube flux coming out  $= \frac{q}{\in_0}$ 



So, flux coming out from one surface 
$$=\frac{q}{6 \in Q_0}$$

**Question:** If a solid cavity whose diameter is removed from a solid sphere of radius R, then the com of remaining part is at?





$$M = \sigma \pi R^{2}, m = -\sigma \pi \left(\frac{R}{2}\right)^{2}$$
$$x_{cm} = \frac{M(0) + m\left(\frac{R}{2}\right)}{M + m} = \frac{\left(\frac{m}{M}\right)\left(\frac{R}{2}\right)}{1 + \frac{m}{M}}$$
$$\Rightarrow x_{cm} = \frac{-R}{6}$$

**Question:** In a YDSE experiment, if Red light is replaced by violet light then the fringe width will be

#### **Options:**

- (a) decrease
- (b) increase
- (c) may increase or decrease
- (d) None of these

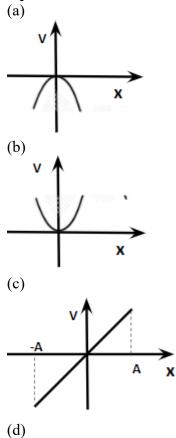
#### Answer: (a)

Solution:

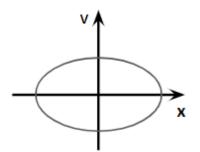
$$\beta = \frac{\lambda D}{d}$$

As decreases for violet light, the fringe width will also decrease.

**Question:** The graph of V versus x in an SHM is (v : velocity, x : displacement) **Options:** 

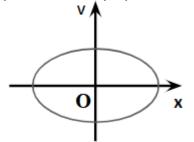






Answer: (d) Solution:

A simple harmonic motion is an example of periodic motion. In simple harmonic motion, a particle is accelerated towards a fixed point (in this case, O) and the acceleration of the particle will be proportional to the magnitude of the displacement of the particle.

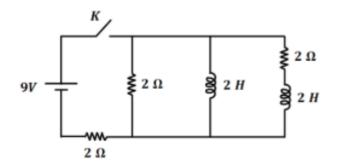


**Question:** If the de Broglie wavelengths of an alpha particle and a proton are the same, then the ratio of their velocities is: **Options:** 

(a)  $\frac{1}{4}$ (b)  $\frac{4}{1}$ (c)  $\frac{1}{2}$ (d) 1 Answer: (a) Solution:  $\frac{h}{m_{\alpha}v_{\alpha}} = \frac{h}{m_{p}v_{p}}$  $\Rightarrow \frac{v_{\alpha}}{v_{p}} = \frac{m_{p}}{m_{\alpha}} = \frac{1}{4}$ 

Question: Find the current through the battery just after the key is closed.



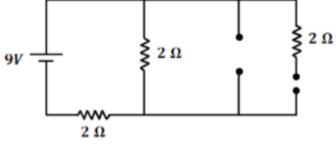


## **Options:**

(a)  $\frac{9}{4}A$ (b)  $\frac{9}{2}A$ (c)  $\frac{9}{1}A$ 

(d) None of these Answer: (a) Solution:

Just after the key is closed, circuit will be



So current in the circuit

$$I = \frac{9}{R_{eq}} = \frac{9}{4} Amp$$



## JEE-Main-24-02-2021-Shift-2

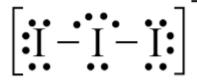
## CHEMISTRY

Question: S in BUNA-S stands for? Options: (a) Styrene (b) Strength (c) Stoichiometry (d) Secondary Answer: (a) Solution: BUNA-S ⇒ Styrene butadiene

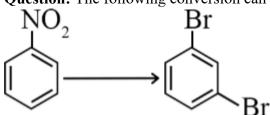
**Question:** Bond angle and shape of  $I_3^-$  ion is?

#### **Options:**

(a) 180° and sp<sup>3</sup>d
(b) 180° and sp<sup>3</sup>d<sup>2</sup>
(c) 90° and sp<sup>3</sup>d
(d) 90° and sp<sup>3</sup>d<sup>2</sup>
Answer: (a)
Solution:



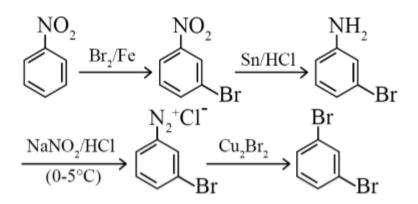
**Question:** The following conversion can take place by:



#### **Options:**

(a) (i) Br<sub>2</sub>/Fe (ii) Sn/HCl
(b) (i) Br<sub>2</sub>/Fe (ii) Sn/HCl (iii) NaNO<sub>2</sub>/HCl (iv) Cu<sub>2</sub>Br<sub>2</sub>
(c) (i) Cu<sub>2</sub>Br<sub>2</sub> (ii) Sn/HCl (iii) Br<sub>2</sub>/Fe
(d) None of these
Answer: (b)
Solution:





**Question:** According to Bohr's model which of the following transition will be having maximum frequency?

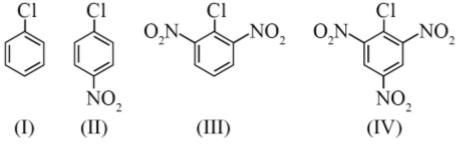
**Options:** 

(a) 3 to 2
(b) 5 to 4
(c) 4 to 3
(d) 2 to 1
Answer: (d)
Solution: 2 to 1 (Lyman series)
Lyman series falls in UV region. Therefore higher energy than other radiations.

### **Question:** $Pbl_2$ given as = 0.1 M ; $K_{sp} = 8 \times 10^{-9}$

Find solubility of  $Pb^{2+}$  **Options:** (a)  $1.4 \times 10^{-3}$ (b)  $2 \times 10^{-4}$ (c)  $1.26 \times 10^{-3}$ (d)  $1.8 \times 10^{-2}$  **Answer:** (c) **Solution:**   $Ksp = 4s^{3}$   $8 \times 10^{-9} = 4s^{3}$   $s^{3} = 2 \times 10^{-9}$  $s = 1.26 \times 10^{-3}$ 

Question: Increasing strength towards nucleophilic attack ?



**Options:** 

(a) (I) < (II) < (III) < (IV) (b) (IV) < (III) < (II) < (I)



(c) (IV) < (II) < (III) < (I)(d) (I) < (III) < (II) < (IV)

#### Answer: (a)

**Solution:** Electron withdrawing groups increases the rate of nucleophilic substitution reaction, due to increase of electrophilic character of carbon involved in C - X bond.

#### **Question:**

**Statement 1:** Hydrogen is most abundant in universe but not so in Earth's troposphere. **Statement 2:** Hydrogen is the lightest element.

#### **Options:**

(a) Statement 1 is correct and Statement 2 is incorrect.

(b) Statement 1 is incorrect and Statement 2 is correct.

(c) Statement 1 is correct and Statement 2 is correct explanation for statement 1.

(d) Statement 1 is correct and Statement 2 is incorrect explanation for statement 1.

#### Answer: (c)

Solution: Due to light weight of hydrogen, it is not abundant in earth's troposphere.

Question: Which of the following salts help in blood clotting?

#### **Options:**

(a) FeCl<sub>3</sub>

(b) Mg(HCO<sub>3</sub>)<sub>2</sub>

(c) NaHCO<sub>3</sub>

(d) FeSO<sub>4</sub>

#### Answer: (a)

**Solution:** Blood being a colloidal solution its coagulation can be understood by Hardy-Schulz's law which states that higher is the charge on cation, higher will be its efficiency to coagulate the colloidal solution.

In the present case, ferric chloride has  $Fe^{3+}$ . Hence, ferric chloride is more effective in enhancing the coagulation rate of blood and stop the bleeding from the cut.

#### **Question:** Match the following:

| Α      | В              |
|--------|----------------|
| (p) Al | (i) Siderite   |
| (q) Zn | (ii) Malachite |
| (r) Fe | (iii) Calamine |
| (s) Cu | (iv) Bauxite   |

#### **Options:**

(a)  $p \rightarrow (iv); q \rightarrow (iii), r \rightarrow (i), s \rightarrow (ii)$ (b)  $p \rightarrow (i); q \rightarrow (ii), r \rightarrow (iv), s \rightarrow (iii)$ (c)  $p \rightarrow (iv); q \rightarrow (iii), r \rightarrow (ii), s \rightarrow (i)$ (d)  $p \rightarrow (iii); q \rightarrow (iv), r \rightarrow (i), s \rightarrow (ii)$ Answer: (a) Solution: Siderite - FeCO<sub>3</sub> Malachite - CuCO<sub>3</sub> Cu(OH)<sub>2</sub> Calamine - ZnCO<sub>3</sub> Bauxite - Al<sub>2</sub>O<sub>3</sub>

**Question:** What will be the magnetic moments (spin only values) of the following complexes?



 $[FeCl_4]^{2^-}, [Co(C_2O_4)_3]^{3^-}, MnO_4^{2^-}$ Options: (a)  $\sqrt{3}, 0, 0$ (b)  $\sqrt{24}, 0, \sqrt{3}$ (c)  $\sqrt{24}, \sqrt{24}, 0$ (d)  $\sqrt{3}, 0, \sqrt{24}$ Answer: (b) Solution:  $[FeCl_4]^{2^-} \Rightarrow Fe^{2^+} \Rightarrow 3d^6$  $\mu = \sqrt{24} B.M$  $[Co(C_2O_4)_3]^{3^-} \Rightarrow Co^{3^+} \Rightarrow 3d^6$  $\mu = 0 B.M$  $MnO_4^{2^-} \Rightarrow Mn^{6^+} \Rightarrow 3d^1$  $\mu = \sqrt{3} B.M$ 

**Question:** Compare the wavelength in flame test for LiCl, NaCl, KCl, RbCl, CsCl **Options:** 

(a) NaCl < CsCl < LiCl < RbCl < KCl</li>
(b) CsCl < NaCl < LiCl < KCl < RbCl</li>
(c) RbCl < KCl < LiCl < CsCl < NaCl</li>
(d) CsCl < NaCl < KCl < LiCl < RbCl</li>
Answer: (b)

#### Solution:

| Compound | Wavelength (λ)<br>(in nm) |
|----------|---------------------------|
| LiCl     | 670.8                     |
| NaCl     | 584.2                     |
| KC1      | 766.5                     |
| RbCl     | 780                       |
| CsCl     | 455                       |

**Question:** Choose incorrect statement: **Options:** 

(a) RuO4 is oxidizing agent

(b) OsO4 is reducing agent

(c) Cr<sub>2</sub>O<sub>3</sub> is amphoteric

(d) Red colour of ruby is due to  $Co^{3+}$ 

#### Answer: (b)

**Solution:**  $OsO_4 \Rightarrow$  Maximum oxidation state (+8) Hence, it can get reduce and oxidise other species i.e. it is a oxidizing agent.

**Question:** Which of the following has highest M.P.? **Options:** 

(a) MgO (b) LiF



(c) NaCl (d) LiCl Answer: (a) Solution:  $MgO \Rightarrow Mg^{2+}, O^{2-}$ Due to higher charge, ionic character will be high and hence, melting point also.

#### Question: Arrange the following in the increasing order of their density: Zn, Fe, Cr, Co **Options:**

(a) Zn < Cr < Co < Fe(b) Fe < Co < Cr < Zn(c) Fe < Cr < Co < Zn(d) Zn < Cr < Fe < CoAnswer: (d) Solution: Density = <u>mass</u>

volume

firstly, metallic radius of transition elements (first transition series) decreases from Sc to Ni then increases from Ni to Zn.



## JEE-Main-24-02-2021-Shift-2

## **MATHEMATICS**

Question: Given, f(0) = 1,  $f(2) = e^2$ , f'(x) = f'(2-x), then the value of  $\int_0^2 f(x) dx$  is

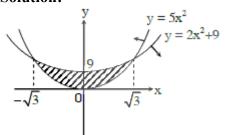
# **Options:** (a) $1 - e^2$ (b) $1 + e^2$ (c) 3e (d) $e^{2}$ Answer: (b) Solution: f'(x) = f'(2 - x)Integrate w.r.t. x f(x) = -f(2-x) + CPut x = 0f(0) = -f(2) + C $1 = -e^2 + C$ $C = 1 + e^2$ $\therefore f(x) = -f(2-x) + 1 + e^2$ $\Rightarrow f(x) + f(2-x) = 1 + e^2 \qquad \dots(i)$ Let, $I = \int_{0}^{2} f(x) dx$ ....(ii) $I = \int_{0}^{2} f(2-x) dx$ ...(iii) (ii)+(iii) $2I = \int_{0}^{2} \left[ f(x) + f(2-x) \right] dx$ $2I = \int_{0}^{2} (1+e^{2}) dx \qquad (\text{from (i)})$ $2I = 2\left(1 + e^2\right)$



 $\Rightarrow I = 1 + e^2$ 

## Question: The area of region defined by $5x^2 \le y \le 2x^2 + 9$ Options: (a) $6\sqrt{3}$ (b) $12\sqrt{3}$ (c) $18\sqrt{3}$ (d) $9\sqrt{3}$

Answer: (b) Solution:

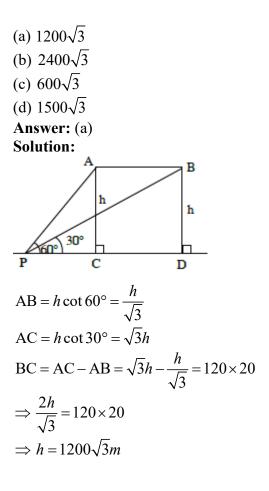


Intersection points

 $5x^{2} = 2x^{2} + 9$   $3x^{2} = 9$   $x^{2} = 3$   $x = \pm\sqrt{3}$ Area =  $\int_{-\sqrt{3}}^{\sqrt{3}} (2x^{2} + 9 - 5x^{2}) dx$   $= 2 \int_{0}^{\sqrt{3}} (9 - 3x^{2}) dx$   $= 2 [9x - x^{3}]_{0}^{\sqrt{3}}$   $= 2 (9\sqrt{3} - 3\sqrt{3})$  $= 12\sqrt{3}$ 

**Question:** A plane is flying horizontally with speed 120 m/s. Its angle of elevation from a point on ground is  $60^{\circ}$ . After 20s angle of elevation is  $30^{\circ}$ . Find height of plane **Options:** 

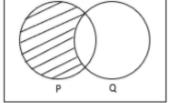




**Question:** Negation of the statement  $\sim p \lor (p \land q)$  is

#### **Options:**

(a)  $p \wedge \sim q$ (b)  $p \vee \sim q$ (c)  $\sim p \wedge q$ (d)  $\sim p \vee \sim q$ Answer: (b) Solution:  $\sim (\sim p \vee (p \wedge q)) = p \wedge \sim (p \wedge q)$ = only p



**Question:** Vertices of  $\Delta$  are (a, c), (2, b) and (a, b), a, b, c are in A.P. centroid is  $\left(\frac{10}{3}, \frac{7}{3}\right)$ . If  $\alpha, \beta$  are roots of  $ax^2 + bx + 1 = 0$  then  $\alpha^2 + \beta^2 - \alpha\beta =$ **Options:** 



(a)  $-\frac{71}{256}$ (b)  $\frac{71}{256}$ (c)  $\frac{69}{256}$ (d)  $-\frac{69}{256}$ Answer: (a) Solution: a, b, c are in A.P.  $\Rightarrow 2b = a + c$ ...(i) Centroid =  $\left(\frac{2a+2}{3}, \frac{2b+c}{3}\right) = \left(\frac{10}{3}, \frac{7}{3}\right)$  $\Rightarrow \frac{2a+2}{3} = \frac{10}{3} \Rightarrow a = 4$ and  $\frac{2b+c}{3} = \frac{7}{3} \Rightarrow a+c+c=7$  (from (i))  $\Rightarrow 2c + 4 = 7 \Rightarrow c = \frac{3}{2}$ Put in (i)  $2b = 4 + \frac{3}{2} = \frac{11}{2}$  $b = \frac{11}{4}$  $\alpha$ ,  $\beta$  are root of  $ax^2 + bx + 1 = 0$  $\Rightarrow \alpha + \beta = \frac{-b}{\alpha} = \frac{-11}{16}, \ \alpha\beta = \frac{1}{\alpha} = \frac{1}{4}$ So,  $\alpha^2 + \beta^2 - \alpha\beta = (\alpha + \beta)^2 - 3\alpha\beta$  $=\left(\frac{-11}{16}\right)^2 - \frac{3}{4}$  $=\frac{121-192}{256}=\frac{-71}{256}$ Question: If  $\begin{vmatrix} f(x) & f'(x) \\ f'(x) & f''(x) \end{vmatrix} = 0, f(x) = 1, f'(0) = 2, f''(x) \neq 0$  then f(1) lies in **Options:** (a)(0,3)(b) (6, 9)(c) [9, 12] (d)[5,7]Answer: (b) Solution:  $f(x)f''(x) - \left\lceil f'(x) \right\rceil^2 = 0$ 



$$\Rightarrow \frac{f''(x)}{f'(x)} = \frac{f'(x)}{f(x)}$$
  

$$\Rightarrow \int \frac{f''(x)}{f'(x)} dx = \int \frac{f'(x)}{f(x)} dx$$
  

$$\Rightarrow \log f'(x) = \log f(x) + \log c$$
  

$$\Rightarrow f'(x) = c f(x)$$
  
Put  $x = 0$   
 $f'(0) = c f(0)$   

$$\Rightarrow 2 = c$$
  

$$\Rightarrow f'(x) = 2f(x)$$
  

$$\Rightarrow \int \frac{f'(x)}{f(x)} dx = \int 2 dx$$
  

$$\log f(x) = 2x + D$$
  
 $f(x) = e^{D}e^{2x}$   
 $f(x) = K e^{2x}$  (Put  $e^{D} = k$ )  
Put  $x = 0$   
 $f(0) = K$   

$$\Rightarrow K = 1$$
  

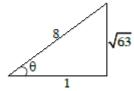
$$\Rightarrow f(x) = e^{2x}$$
  

$$\Rightarrow f(1) = e^{2}$$
  
which lies in (6, 9)

**Question:** The value of  $\tan\left(\frac{1}{4}\sin^{-1}\frac{\sqrt{63}}{8}\right)$  is

**Options:** 

(a) 
$$\frac{1}{\sqrt{7}}$$
  
(b)  $\frac{1}{\sqrt{5}}$   
(c)  $\frac{2}{\sqrt{3}}$   
(d) none of these **Answer:** (a) **Solution:**





Let 
$$\sin^{-1} \frac{\sqrt{63}}{8} = \theta$$
  

$$\Rightarrow \sin \theta = \frac{\sqrt{63}}{8}$$

$$\Rightarrow \cos \theta = \frac{1}{8}$$

$$\Rightarrow \cos \frac{\theta}{2} = \sqrt{\frac{1 + \cos \theta}{2}} = \sqrt{\frac{1 + \frac{1}{8}}{2}} = \sqrt{\frac{9}{16}} = \frac{3}{4}$$
So,  $\tan \left(\frac{1}{4}\sin^{-1} \frac{\sqrt{63}}{8}\right) = \tan \left(\frac{\theta}{4}\right)$ 

$$= \sqrt{\frac{1 - \cos\left(\frac{\theta}{2}\right)}{1 + \cos\left(\frac{\theta}{2}\right)}} = \sqrt{\frac{1 - \frac{3}{4}}{1 + \frac{3}{4}}} = \frac{1}{\sqrt{7}}$$

**Question:** The number of natural numbers less than 7,000 which can be formed by using the digits 0, 1, 3, 7, 9 (repetition of digits allowed) is equal to

#### **Options:**

(a) 250
(b) 374
(c) 372
(d) 375
Answer: (b)
Solution:
7 and 9 cannot occur at first place

Hence, required number of natural numbers less than 7000

 $= 3 \times 5 \times 5 \times 5 - 1 = 375 - 1 = 374$ 

(we have subtracted 1 for the case 0000 case)

**Question:** Find the value of  ${}^{n+1}C_2 + 2({}^2C_2 + {}^3C_2 + ... + {}^nC_2) = ?$ 

#### **Options:**

(a) 
$$\frac{n(n+1)(2n-1)}{6}$$
  
(b)  $\frac{n(n+1)(2n+1)}{6}$   
(c)  $\frac{(n-1)n(n+1)}{6}$ 



(d) 
$$\frac{n(n+1)}{2}$$
  
Answer: (b)  
Solution:  
 $S = {}^{2}C_{2} + {}^{3}C_{2} + ... + {}^{n}C_{2} = {}^{n+1}C_{3}$   
 $\therefore {}^{n+1}C_{2} + {}^{n+1}C_{3} + {}^{n+1}C_{3} = {}^{n+2}C_{3} + {}^{n+1}C_{3}$   
 $= \frac{(n+1)!}{3!(n-1)!} + \frac{(n+1)!}{3!(n-2)!}$   
 $= \frac{(n+2)(n+1)n}{6} + \frac{(n+1)n(n-1)}{6} = \frac{n(n+1)}{6}(2n+1)$ 

**Question:** If A and B are subsets of X = {1, 2, 3, 4, 5} then find the probability such that  $n(A \cap B) = 2$ 

**Options:** 

(a)  $\frac{65}{2^7}$ (b)  $\frac{65}{2^9}$ (c)  $\frac{35}{2^9}$ (d)  $\frac{135}{2^9}$  **Answer:** (d) **Solution:** Required probability =  $\frac{{}^5C_2 \times 3^3}{4^5}$ =  $\frac{10 \times 27}{2^{10}} = \frac{135}{2^9}$ 

Question: A curve y = f(x) passing through the point (1, 2) satisfies the differential equation  $x \frac{dy}{dx} + y = bx^4$  such that  $\int_{1}^{2} f(y) dy = \frac{62}{5}$ . The value of b is Options: (a) 10 (b) 11 (c)  $\frac{32}{5}$ (d)  $\frac{62}{5}$ Answer: (a)



#### Solution:

 $\frac{dy}{dx} + \frac{y}{x} = 6x^{3}$ I.F. =  $e^{\int \frac{dy}{dx}} = x$   $\therefore yx = \int bx^{4} dx = \frac{bx^{5}}{5} + C$ Passes through (1, 2), we get  $2 = \frac{b}{5} + C$  ....(i) Also,  $\int_{1}^{2} \left(\frac{bx^{4}}{5} + \frac{C}{x}\right) dx = \frac{65}{2}$   $\Rightarrow \frac{b}{25} \times 32 + C \ln 2 - \frac{b}{25} = \frac{62}{5}$  $\Rightarrow C = 0 \& b = 10$ 

**Question:** A curve  $y = ax^2 + bx + c$  passing through the point (1, 2) has slope at origin equal to 1, then ordered triplet (a, b, c) may be

## **Options:**

(a) (1, 1, 0) (b)  $\left(\frac{1}{2}, 1, 0\right)$ (c)  $\left(-\frac{1}{2}, 1, 1\right)$ (d) (2, -1, 0)Answer: (a) Solution: 2 = a + b + c ....(i)  $\left.\frac{dy}{dx} = 2ax + b \Rightarrow \frac{dy}{dx}\right|_{(0,0)} = 1$  $\Rightarrow b = 1 \Rightarrow a + c = 1$ 

**Question:** The value of  $\int_{1}^{3} \left[ x^2 - 2x - 2 \right] dx$  ([.] denotes greatest integer function)

#### **Options:**

(a) -4 (b) -5 (c)  $-1 - \sqrt{2} - \sqrt{3}$ (d)  $1 - \sqrt{2} - \sqrt{3}$ Answer: (c)



Solution:

$$I = \int_{1}^{3} -3 \, dx + \int_{1}^{3} \left[ \left( x - 1 \right)^{2} \right] dx$$
  
Put  $x - 1 = t; \, dx = dt$   
$$I = (-6) + \int_{0}^{2} \left[ t^{2} \right] dt$$
  
$$I = (-6) + \int_{0}^{1} 0 \, dt + \int_{1}^{\sqrt{2}} 1 \, dt + \int_{\sqrt{2}}^{\sqrt{3}} 2 \, dt + \int_{\sqrt{3}}^{2} 3 \, dt$$
  
$$I = -6 + \left( \sqrt{2} - 1 \right) + 2\sqrt{3} - 2\sqrt{2} + 6 - 3\sqrt{3}$$
  
$$I = -1 - \sqrt{2} - \sqrt{3}$$

**Question:** Which of the following conic has tangent ' $x + \sqrt{3}y - 2\sqrt{3}$ ' at point  $\left(\frac{3\sqrt{3}}{2}, \frac{1}{2}\right)$ ?

# **Options:** $2 + 0 y^2$

(a) 
$$x^{2} + 9y^{2} = 9$$
  
(b)  $y^{2} = \frac{x}{6\sqrt{3}}$   
(c)  $x^{2} - 9y^{2} = 10$   
(d)  $x^{2} = \frac{y}{6\sqrt{3}}$ 

## Answer: (a) Solution:

Tangent to  $x^2 + 9y^2 = a$  at point  $\left(\frac{3\sqrt{3}}{2}, \frac{1}{2}\right)$  is  $x\left(\frac{3\sqrt{3}}{2}\right) + 9y\left(\frac{1}{2}\right) = 9$ Option (a) is true

Question: Equation of plane passing through (1, 0, 2) and line of intersection of planes

is

$$\vec{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = 1 \text{ and } \vec{r} \cdot (\hat{i} - 2\hat{j}) = -2$$
Options:  
(a)  $\vec{r} \cdot (\hat{i} + 7\hat{j} + 3\hat{k}) = 7$   
(b)  $\vec{r} \cdot (3\hat{i} + 10\hat{j} + 3\hat{k}) = 7$   
(c)  $\vec{r} \cdot (\hat{i} + \hat{j} - 3\hat{k}) = 4$   
(d)  $\vec{r} \cdot (\hat{i} + 4\hat{j} - \hat{k}) = -7$ 
Answer: (a)



#### Solution:

Plane passing through intersection of plane is  $(\vec{r}, (\hat{i} + \hat{i} + \hat{k}) = -1) + \lambda (\vec{r}, (\hat{i} - 2\hat{i}) + 2) = 0$ 

$$\left\{r\cdot\left(i+j+k\right)=-1\right\}+\lambda\left\{r\cdot\left(i-2j\right)+2\right\}=0$$

Passing through  $\hat{i} + 2\hat{k}$ , we get

 $(3-1) + \lambda (\lambda + 2) = 0 \implies \lambda = -\frac{2}{3}$ Hence, equation of plane is  $3\left\{\vec{r}\cdot(\hat{i}+\hat{j}+\hat{k})-1\right\} - 2\left\{\vec{r}\cdot(\hat{i}-2\hat{j})+2\right\} = 0$  $\implies \vec{r}\cdot(\hat{i}+7\hat{j}+3\hat{k}) = 7$ 

**Question:** A is  $3 \times 3$  square matrix and B is  $3 \times 3$  skew symmetric matrix and X is a  $3 \times 1$  matrix, then equation  $(A^2 B^2 - B^2 A^2)X = 0$  (Where O is a null matrix) has/have

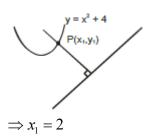
#### **Options:**

(a) Infinite solution (b) No solution (c) Exactly one solution (d) Exactly two solution Answer: (a) Solution:  $A^{T} = A, B^{T} = -B$ Let  $A^{2}B^{2} - B^{2}A^{2} = P$   $P^{T} = (A^{2}B^{2} - B^{2}A^{2})^{T} = (A^{2}B^{2})^{T} - (B^{2}A^{2})^{T}$   $= (B^{2})^{T} (A^{2})^{T} - (A^{2})^{T} (B^{2})^{T}$   $= B^{2}A^{2} - A^{2}B^{2}$   $\Rightarrow P$  is skew-symmetric matrix  $\Rightarrow |P| = 0$ Hence PX = 0 have infinite solution

Question: Find a point on the curve  $y = x^2 + 4$  which is at shortest distance from the line y = 4x - 1. Options: (a) (2, 8) (b) (1, 5) (c) (3, 13) (d) (-1, 5)

(d) (-1, 5) **Answer:** (a) **Solution:**   $\frac{dy}{dx}\Big|_{p} = 4$  $\therefore 2x_{1} = 4$ 





 $\therefore$  Point will be (2, 8)

Question: Let 
$$f(x) = \begin{cases} -55x & ; \quad x < -5 \\ 2x^3 - 3x^2 - 120x & ; \quad -5 \le x < 4 \\ 2x^3 - 3x^2 - 36x + 10 & ; \quad x \ge 4 \end{cases}$$

Then interval in which f(x) is monotonically increasing is **Options:** 

(a)  $(-5, -4) \cup (4, \infty)$ (b)  $(-\infty, -4) \cup (5, \infty)$ (c)  $(-5, 4) \cup (5, \infty)$ (d)  $(-5, -4) \cup (3, \infty)$ 

# Answer: (a) Solution:

$$f'(x) = \begin{cases} -55 & ; \quad x < -5 \\ 6(x^2 - x - 20) & ; \quad -5 < x < 4 \\ 6(x^2 - x - 6) & ; \quad x > 4 \end{cases}$$
$$f'(x) = \begin{cases} -55 & ; \quad x < -5 \\ 6(x - 5)(x + 4) & ; \quad -5 < x < 4 \\ 6(x - 3)(x + 2) & ; \quad x > 4 \end{cases}$$

Hence, f(x) is monotonically increasing is  $(-5, -4) \cup (4, \infty)$ 

**Question:** If variance of ten numbers 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, k; where  $k \in N$ , is less than or equal to 10 then maximum value of k is.

Answer: 11.00Solution: var  $\leq 10$ 

$$\frac{9(1^2) + k^2}{10} - \left(\frac{9+k}{10}\right)^2 \le 10$$

 $90 + 10k^2 - 81 - k^2 - 18k \le 1000$ 



 $9k^{2} - 18k \le 991$  $9k(k-2) \le 991$  $\therefore k \in N$ 

 $\therefore$  By hit and trial we observe that max. value of k is 11.

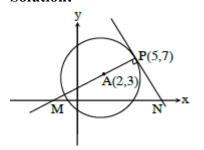
Question: If  $a + \alpha = 1$ ,  $\beta + b = 2$  and  $a(f(x)) + \alpha \left(f\left(\frac{1}{x}\right)\right) = \frac{\beta}{x} + bx$ , then find value of

$$\frac{\left[f(x)+f\left(\frac{1}{x}\right)\right]}{x+\frac{1}{x}} =$$
Answer: 2.00
Solution:
Take  $a = \alpha = \frac{1}{2}$  and  $b = \beta = 1$ 
Now,  $a(f(x)) + \alpha \left(f\left(\frac{1}{x}\right)\right) = \beta x + \frac{b}{x}$ 

$$\Rightarrow \frac{1}{2} \left[f(x) + f\left(\frac{1}{x}\right)\right] = x + \frac{1}{x}$$

$$\Rightarrow \frac{f(x) + f\left(\frac{1}{x}\right)}{x+\frac{1}{x}} = 2$$

Question:  $(x-2)^2 + (y-3)^2 = 25$ , Normal and tangent are drawn to it at (5, 7). Area of  $\Delta$  made by normal, tangent and x – axis is A. Find 24A. Answer: 1225.00 Solution:



Equation of normal at P(5, 7)

$$y - 7 = \frac{7 - 3}{5 - 2} (x - 5)$$



$$y-7 = \frac{4}{3}(x-5)$$
  
Put  $y = 0$   
$$-21 = 4x - 20$$
  
$$4x = -1$$
  
$$x = \frac{-1}{4}$$
  
$$\Rightarrow B\left(\frac{-1}{4}, 0\right)$$

Equation of tangent at P(5, 7)

$$y-7 = \frac{-3}{4}(x-5)$$
  
Put  $y = 0$   
$$-28 = -3x+15$$
  
$$\Rightarrow 3x = 43 \Rightarrow x = \frac{43}{3}$$
  
$$\Rightarrow C\left(\frac{43}{3}, 0\right) \Rightarrow BC = \frac{43}{3} + \frac{1}{4} = \frac{175}{12}$$
  
So,  $24A = 24 \times \frac{1}{2} \times \frac{175}{12} \times 7 = 1225$ 

Question: Sum of first four terms of  $G.P = \frac{65}{12}$ . Sum of their reciprocals is  $\frac{65}{18}$ . Product of first 3 terms is 1. If  $3^{rd}$  term is  $\alpha$ ,  $2\alpha =$ Answer: 3.00 Solution: Let G.P. is  $\frac{a}{r}$ , a, ar,  $ar^2$ Now,  $\frac{a}{r} \cdot a \cdot ar = 1 \Rightarrow a^3 = 1 \Rightarrow a = 1$ Also,  $\frac{a}{r} + a + ar + ar^2 = \frac{65}{12}$  $\Rightarrow \frac{1}{r} + 1 + r + r^2 = \frac{65}{12}$ 

$$\Rightarrow \frac{1+r+r^2+r^3}{r} = \frac{65}{12} \qquad ...(i)$$
  
And  $\frac{r}{a} + \frac{1}{a} + \frac{1}{ar} + \frac{1}{ar^2} = \frac{65}{18}$ 



$$\Rightarrow r+1+\frac{1}{r}+\frac{1}{r^2} = \frac{65}{18}$$

$$\Rightarrow \frac{r^3+r^2+r+1}{r^2} = \frac{65}{18} \qquad \dots (ii)$$

$$\frac{(i)}{(ii)} \Rightarrow \frac{r^2}{r} = \frac{18}{12}$$

$$\Rightarrow r = \frac{3}{2}$$

$$\therefore 3^{rd} \text{ term} = \alpha = ar = \frac{3}{2}$$

$$\therefore 2\alpha = 3$$

**Question:**  $S_1, S_2, ..., S_{10}$  are 10 students, in how many ways they can be divided in 3 groups A, B and C such that all groups have atleast one student and C has maximum 3 students. **Answer:** 31650.00

#### Solution:

Case 1: C gets exactly 1 student

$$\Rightarrow {}^{10}C_1 \times (2^9 - 2) = 10 \times 510 = 5100$$

Case 2: C gets exactly 2 students

$$\Rightarrow^{10}C_2 \times (2^8 - 2) = 11430$$

Case 3: C gets exactly 3 students

$$\Rightarrow {}^{10}C_3 \times (2^7 - 2) = 15120$$

Total number of ways = 5100 + 11430 + 15120 = 31650

Question: A(5, 0) and B(-5, 0) are two points PA = 3PB. Then locus of P is a circle with radius 'r'. Then  $4r^2 =$ Answer: 525.00 Solution: Let P(h,k) $PA = 3PB \Rightarrow PA^2 = 9PB^2$  $\Rightarrow (h-5)^2 + k^2 = 9[(h+5)^2 + k^2]$ 

$$\Rightarrow h^{2} + 25 - 10h + k^{2} = 9h^{2} + 225 + 90h + 9k^{2}$$

$$\Rightarrow 8h^2 + 8k^2 + 100h + 200 = 0$$



$$\Rightarrow h^2 + k^2 + \frac{25}{2}h + 25 = 0$$

So, locus is

$$x^{2} + y^{2} + \frac{25}{2}x + 25 = 0$$
  
Its radius 
$$= \sqrt{\left(\frac{25}{4}\right)^{2} - 25}$$
$$\Rightarrow r = \sqrt{\frac{622 - 400}{16}} = \frac{15}{4}$$
$$\Rightarrow 4r^{2} = 4\left(\frac{225}{16}\right) = \frac{225}{4}$$